A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.
선박 및 해양 구조물의 충돌, 좌초, 폭발과 같은 사고 하중과 쇄빙선에 지속적으로 작용하는 빙충격 문제는 구조물의 파단을 유발할 수 있다. 이러한 재료 및 구조물의 파단 예측은 경제적, 환경적 측면에서 매우 중요하다. 해양 구조물에 사용되는 대부분의 연강(Mild steel)과 고장력강(High tensile steel)은 모두 연성 재료(Ductile material)의 범주에 포함된다. 연성 재료 및 구조물의 파단은 손상의 누적(Accumulation of damage)에 의해 발생하며, 미시적 관점에서 손상이 누적은 기공(Void)의 생성(Nucleation), 성장(Growth), 병합(Coalescence), 미세 균열의 진전(Propagation of micro-cracks)의 과정으로 간주된다(Lemaitre, 1985).
연성 재료의 파단 거동은 응력 삼축비(Stress traixaility)와 로드각(Lode angle)의 영향을 받는 것으로 알려져 있다. 응력 삼축비가 파단 변형률에 미치는 영향은 많은 연구자들에 의해 증명되었다(Bridgman, 1952; Rice and Tracey, 1969). Bao and Wierzbicki(2004)는 다양한 형상의 알루미늄 시편에 대한 실험과 수치해석을 통해 파단 시점에서 응력 상태를 도출하고, 파단 변형률을 응력 삼축비의 함수로 표현하였다. Lode(1926)는 동일한 응력 삼축비를 가지는 응력 상태를 구분해주기 위한 3차 편차 응력 불변량(Third deviatoric stress invariant)을 이용하여 로드각을 제시했다. 응력 삼축비와 함께 로드각은 파단 파라미터(Fracture parameter)로서 많은 연구자들에 의해 증명되었다. 이후 응력 삼축비와 로드각을 함수로 하는 파단 변형률 모델(Fracture strain model)의 유용성은 많은 연구자들에 의해 검증 되었다(Bai and Wierzbicki, 2008; Choung et al., 2012; Choung and Nam, 2013; Choung et al., 2014a; Choung et al., 2014b; Choung et al., 2015a; Choung et al., 2015b; Park et al., 2016).
등가 소성 변형률에 의존적인 파단 변형률 모델은 하중 경로(Loading path) 또는 응력 경로(Stress path)의 영향을 받는 것으로 알려져 있다. Benzerga et al.(2012)와 Yu et al.(2016)은 하중 경로효과가 파단 변형률에 미치는 영향을 단일 기공 모델에 대한 수치해석을 통하여 증명한 바 있으며, Basu and Benzerga(2015)는 이를 실험적 연구를 통해 증명한 바 있다. 파단 변형률 모델에서 하중 경로 효과는 손상 발전(Damage evolution)과 하중 순서 효과(Load sequence effect)로 나타내진다. Papasidero et al.(2015)는 중공관(Hollow cylinder) 형상의 시편에 인장, 압축, 비틀림 하중을 단계별로 순차적으로 부여하여 다양한 하중 조합 부하 순서 조건에서 하중 순서 효과에 대한 연구를 수행한 바 있다. 이후 많은 연구자들은 다양한 하중 순서 실험과 손상 누적 함수를 이용해 연성 재료의 파단에 하중 경로가 미치는 영향에 대한 연구를 수행하여오고 있다(Bai, 2008; Mohr and Marcadet, 2015).
본 논문의 저자에 의해 수행되었던 선행 연구(Choung et al., 2011; 2012; 2014a; 2014b; 2015a; 2015b; Choung and Nam, 2013)에서는 극한지 선박용 고장력강(EH36)으로 제작된 다양한 형상의 시편(환봉형, 판상형, 순수 전단, 전단-인장 및 압축 시편)에 대한 실험과 수치 해석을 수행하고 평균 응력 삼축비(Average stress triaxiality)와 평균 정규 로드각(Average normalized lode angle)의 함수인 파단 변형률 평면을 제시한 바 있다. 또한 비대칭 노치재에 대한 파단 실험과 상용 유한 요소 프로그램 Abaqus/Explicit(Simulia, 2008)의 사용자 서브루틴(User subroutine) 시뮬레이션을 통하여 파단 변형률 평면의 정량성을 검증하였다. 그러나 이들이 개발하고 사용했던 모델은 하중 경로 효과를 전혀 고려하지 못하였다.
이러한 문제점을 보완하고자 본 논문에서는 선행 연구에서 수행된 실험을 응력의 비비례(Stress non-proportionality) 관점에서 재분류하고, 응력의 비비례성을 고려할 수 있는 두가지 손상 모델에 적용하고자 한다. 즉 선형 손상 발전 모델과 비선형 손상 발전 모델의 재료 상수를 각각 비례 응력 실험 및 비비례 응력 실험과의 적합을 통하여 결정하였다. 제시된 손상 모델의 유효성을 검증하기 위하여 비대칭 노치 시편의 인장 실험 결과와 비교를 실시하였다.
재료를 등방성으로 가정할 때 Von Mises 항복 함수는 Fig. 1에 보인 바와 같이 주응력 성분(
Von Mises 항복 조건에서 편차 응력 평면 상의
Bai and Wierzbicki(2008)는 하중 경로의 영향에 덜 민감해지기 위해서 두 개 파단 파라미터의 누적 평균 응력 삼축비 및 평균 정규 로드각을 사용하였다(식 (6) 및 (7) 참조).
Bai and Wierbicki(2008)은 평균 응력 삼축비와 평균 로드각을 변수로 표현되는 연성 재료의 파단 모델을 식 (8)과 같이 제시하였다. 여기서 , , 는 각각 인장, 전단, 압축으로 인한 파단 변형률 단위 항이다. 각 성분은 평균 응력 삼축비의 함수로 표현되며, 6개 재료상수(
앞서 언급한 바와 같이 파단 변형률은 하중 경로 또는 응력 경로의 영향을 받는 것으로 알려져 있다. Fischer et al.(1995)는 하중 경로를 고려해주기 위해서 손상 누적 모델(Damage accumulation model)을 제시한 바 있다. 이후 여러 연구자들은 파단 인자의 변동성에 의존적인 연성 손상 모델을 제시하였다(Xue, 2007; Bai and Wierzbicki, 2010, Cortese et al., 2014; Mohr and Marcadet, 2015). 본 연구에서 사용된 손상 발전 모델은 식 (9)와 같다. 여기서 손상은 소성 변형률의 누적으로 표현되며, 이를 가중시키는 방법에 따라 선형 또는 비선형으로 나뉘어진다. 식 (9)에서 손상 발전 지수(Damage evolution exponent)
선행연구(Choung et al.,2011; 2012; 2014a; 2014b; 2015a; 2015b; Choung and Nam, 2013)에서 수행된 극한지용 고장력강(EH36)의 다양한 시편을 Fig. 3-5에 나타내었다. 실험에 사용된 소재는 국내 철강사에서 제조한 극한지 선박용 고장력강(EH36)이며, 원판(Base plate)의 두께, 폭, 길이는 각각 25
환봉형 시편(Round bar specimen) 및 판상형 시편(Flat bar specimen)은 ASTM(2004)에 제시된 시편의 기본 형상을 기준으로 강재의 가공 방향(Rolling direction)과 가공 직교 방향(Transverse direction)으로 시편을 가공하였다. 판상형 시편은 모재의 두께 25mm를 고려하여 상층(Top layer)과 중층(Middle layer)에서 두께 2mm로 제작되었고, 환봉형 시편은 모재의 중층에서 가공되었다(Fig. 3 참조). 전단-인장 시편(Shear-tension specimen)은 순수 전단시편(Pure shear specimen)의 대칭면을 회전시킨 시편을 의미한다(Fig. 4 참고). 압축 시편은 높이와 지름의 비에 따라 총 5개 가공되었다(Fig. 5 참고).
선행 연구에서는 각 시편의 파단 시작에 상응 하는 연신 또는 압축을 파단 개시점(Fracture initiation point)으로 인지하고, 이 실험에 대한 수치 해석을 통하여 파단 개시점에서의 두 개 파단 파라미터를 추출한바 있다. 시편의 형상 및 수치해석 방법은 선행 연구에 자세히 기술 되어있다(Choung et al., 2015a; Choung et al., 2015b). Fig. 3에 보인 환봉형 시편의 인장, 순수 인장 시편의 전단, 압축 시편의 압축시 파단 개시점에 상응하는 정규 로드각 θ이 각각 1.0, 0.0, -1.0을 유지하는 것을 확인하였다. 판상형 인장 시편의 인장은 평면 응력 조건을 비교적 만족하는 것을 확인하였다. 순수 전단, 전단-인장, 압축 시편의 명칭은 각 시편의 도면에 표기 되어 있으며, 환봉형, 판상형, 비대칭 판상형 인장 시편의 명칭을 Table 1에 표기하였다.
[Table 1] Labels of round and flat bar specimens
Labels of round and flat bar specimens
Fig. 6에는 시편의 종류별 유한 요소 모델과 경계 조건이 나타나 있다. 환봉형 시편(RL-R0080)은 원주 방향으로 축대칭이므로 Fig. 6(a)에 나타난 것과 같이 감차 적분 4절점 축대칭 요소(CAX4R)을 이용해 모델링 하였다. 시편 하단 대칭면에
Choung et al. (2015b)은 다양한 형상의 시편에 대한 실험 및 수치 해석을 통해 Bai and Wierbicki (2008)가 제시한 파단 변형률 모델(식 (8) 참조)의 재료 상수를 제시한 바 있다(Fig. 7 참고). 제시된 파단 변형률 모델의 재료 상수는 각각
본 연구에서는 선행 실험의 응력 경로를 검토하였으며, 이를 위하여 파단 개시가 예측되는 지점(절점)에서 응력을 복원하여 다양한 물리량을 계산하였다. 이를 통하여 비례 응력과 비비례 응력 실험으로 분류하는 작업을 수행하였다. 비례 응력을 나타내는 경우 파단은 응력 경로에 무관하고 오로지 파단 파라미터의 함수로서 파단을 표현이 가능하다. 따라서 비례 응력 실험을 파단 변형률 평면의 재료 상수 교정에 사용하였다. 반면 비비례 응력을 나타내는 경우 파단은 응력 경로에 영향을 받기 때문에 비비례 응력 실험과 비례 응력 실험 결과를 모두 손상 누적 모델의 손상 지수를 결정하는 데 사용하였다.
환봉형 노치재(RL-R0750)에 대한 수치 해석을 통해 얻어진 등가 소성 변형률의 발달에 따른 파단 파라미터를 Fig. 8에 나타내었다. 평균 정규 로드각은 순수 인장 상태(θ
판상형 노치재(FLM-R0640)에 대한 수치 해석을 통해 얻어진 등가 소성 변형률의 발달에 따른 파단 파라미터를 Fig. 9에 나타내었다. 판상형 노치재 인장 실험의 경우 인장 하중이 증가함에 따라 평균 응력 삼축비와 평균 정규 로드각이 급격하게 변화하는 것을 확인할 수 있다. 따라서 판상형 노치재 인장 실험은 비비례 응력 실험으로 분류될 수 있다.
압축 실험(CT-H200)에서 평균 응력 삼축비와 평균 로드각은 매우 일정한 상태를 유지하는 것을 Fig. 10로부터 확인이 가능하다. 예상한대로 순수 압축 상태(
Fig. 11(a)에 나타낸 순수 전단 시편(SH-U) 시뮬레이션에서 파단 파라미터는 순수 전단 응력 상태(
Fig. 12에는 실험 종류별(시편 이름별) 평균 응력 삼축비와 평균 정규 로드각의 관계가 나타나 있다. 이상적인 비례 응력 실험은 파단 파라미터의 경로는 점에 가깝게 표현된다. 압축 실험(CT-H200)의 경우 거의 점으로 표현되는 것을 확인할 수 있다. 순수 전단 실험(SH-U)의 경우도 비교적 파단 파라미터의 변동성이 작은 것으로 보여진다. 환봉형 노치재(RL-R0750)는 평균응력 삼축비만 직선으로 변동하는 것을 확인할 수 있다. 판상형 노치재(FLM-R0640)의 파단 파라미터는 직선으로 변화하는 것을 확인할 수 있다. 전단-인장 시편(ST45-U)의 파단 파라미터의 비선형성이 가장 심한 것으로 확인된다. 정리하자면, 환봉형 노치재 인장, 순수 압축, 순수 전단 실험을 비례 응력 실험으로 정의하였으며, 나머지 실험을 비비례 응력 실험으로 분류하였다.
환봉형 노치재 인장 실험, 순수 전단 실험, 압축 실험의 시뮬레이션을 실시하고 파단 예측 위치에서 응력 이력을 추출하여 파단 개시점에 상응하는 응력으로부터 파단 파라미터를 도출하였다. 이 파라미터를 식 (8)에 대입하여 3차원 파단 변형률 평면의 인장(
다음 단계는 손상 지수를 결정하는 과정이다. 비례 응력 실험 및 비비례 응력 실험에 대한 수치 해석을 실시하여 파단 예측 위치에서 응력 이력을 추출하고 파단 개시점에 상응하는 파단 변형률과 비선형 손상 누적 모델이 예측하는 파단 변형률을 비교하여 손상 지수를 결정하였다. 이때 손상 지수는 손상 지수를 1.0부터 5.0까지 0.1 간격으로 증가시키면서 가장 오차율이 작은 손상 지수를 탐색 하였다. 즉 설계 변수는 손상 지수, 목적 함수는 실험에서 얻은 파단 변형률과 비선형 손상 누적 모델이 예측한 파단 변형률의 오차율의 최소화이다. Fig. 13(a)와 (b)는 각각 손상지수
본 연구에서 제시한 파단 기준은 응력 경로 효과에 독립적인 파단 변형률 평면과 응력 경로 효과를 고려할 수 있는 손상 발전 모델이다. 이를 정량적으로 검증하기 위해서는 다양한 응력성분이 발전하는 실 구조물 실험을 시뮬레이션 하는 것이다. 이러한 실 구조물 실험을 실시하는 것은 많은 자원을 요구할 뿐만 아니라, 본 연구에서 제시한 새로운 파단 모델은 하중 순서 효과를 포함하지 않기 때문에, 본 연구에서는 간단한 파단 실험에 대한 검증을 실시하였다.
본 연구에서는 Choung et al. (2015b)이 수행한 비대칭 노치재의 인장 실험을 손상 누적 모델의 검증 자료로 사용하였다. EH36강으로 제작된 비대칭 노치 시편의 기본 형상은 판상형 노치 시편과 동일하나, 노치가 시편의 비대칭 가공 되었다(Fig. 14 참조). 시편은 모재 두께방향의 상층과 중층에서 강재 가공 방향으로 가공 되었다. 노치 크기(
[Table 2] Labels of asymmetric notch specimens.
Labels of asymmetric notch specimens.
Fig. 15에 비대칭 노치 실험에 대한 결과가 나타나 있다. 비대칭 노치재 실험애서 평균 응력 삼축비와 평균 정규 로드각은 노치 크기에 따라 차이를 보인다. 반면 두가지 비대칭 노치재는 파단에 근접하여 평균 정규 로드각이 양수이고 평균 응력 삼축비가 0.5부근이므로 거의 평면 응력 상태에서 파단이 발생하였을 것으로 보여진다.
누적 손상이 1일 때의 소성 변형률이 파단 변형률에 근접할수록 우수한 파단 기준으로 간주된다. 이러한 관점에서 선형 손상 발전 모델(
파단 변형률 평면만을 이용하여 예측한 파단 변형률과 비선형 손상 누적 모델을 이용하여 예측한 파단 변형률을 정리하여 Table 3에 제시하였다. 또한 실험에서 얻은 파단 변형률을 동시에 제시하였다. 파단 변형률 평면, 선형 손상 누적 모델, 비선형 손상 누적 모델의 평균 오차율은 각각 4.64%, 5.39%, 5.03%로서 큰 차이를 보이지 않았다. 즉 세 파단 모델 모두 파단 예측에 비교적 높은 정확도를 보이고 있음을 확인할 수 있었다. 하중 경로 독립적인 파단 변형률 평면 모델을 적용하여도 비교적 높은 정도의 파단 변형률을 예측할 수 있는 이유는 파단 위치에서 응력의 비 비례성이 존재하더라도 소위 파괴 역학 관점에서 1차 하중 모드(mode I)를 유지하였기 때문으로 사료된다. 좀 더 복잡한 응력 경로를 가지는 실험에 대한 검증이 요구된다고 볼 수 있다.
[Table 3] Comparison of engineering fracture strains for asymmetric notch specimens
Comparison of engineering fracture strains for asymmetric notch specimens
선행연구(Choung et al., 2011; 2012; 2014b; 2015a; 2015b; Choung and Nam, 2013)에서는 다양한 실험과 수치 해석을 통해 평균 응력 삼축비와 평균 정규 로드각을 함수로 하는 EH36강의 파단 변형률 평면을 제시한바 있다. 또한 비대칭 노치재에 대한 실험과 수치 해석을 통하여 파단 변형률 평면의 유효성을 검증한 바 있다. 최근 Park et al.(2016)는 펀치 시편에 대한 실험 결과를 수치 해석 결과와 비교하여 유효성을 한 번 더 검증한바 있다.
본 연구에서는 하중 경로 또는 응력 경로 효과가 재료의 파단에 미치는 영향을 분석하기 위하여 손상을 파단 지표로 사용하였다. 손상 파단 모델에 사용되는 재료 상수를 도출하기 위하여 선행 연구(Choung et al., 2011; 2012; 2014b; 2015a; 2015b; Choung and Nam, 2013)에서 수행된 다양한 종류의 실험과 시뮬레이션으로부터 비례 응력 실험 및 비비례 응력 실험을 분류하는 작업을 수행하였다. 비례 응력으로 분류된 실험 결과로부터 파단 변형률 평면의 재료 상수를 교정하기 위하여 선형 회귀 분석을 적용하였으며, 파단 변형률 평면의 교정된 재료 상수를 제시하였다. 또한 비례 응력 실험 및 비비례 응력 실험 결과로부터 손상 발전 모델의 손상 지수를 결정하기 위하여 최적화 기법을 도입하였으며, 3.0의 손상 지수를 제시하였다.
본 연구에서 제시한 선형 및 비선형 손상 누적 모델을 검증하기 위하여 선행 연구에서 실시된 비대칭 노치재 실험을 사용하였다. 비대칭 노치재의 인장 실험은 비교적 유효한 응력 경로의 비선형성이 존재하였지만, 선형 및 비선형 손상 누적 모델이 유효한 결과의 차이를 보여주지 못하였다. 오히려 파단 변형률 평면만을 적용한 파단 예측의 평균 오차율이 가장 적었다. 이에 대한 원인을 규명하기 위해서는 조합 하중 실험이나 하중 순서 효과 등에 대한 검증이 요구된다. 이에 관한 자료는 서론에서 제기한 바와 같이 Benzerga et al.(2015), Yu et al.(2016), Basu and Benzerga(2015), Papasidero et al.(2015) 등이 수행한 다양한 하중 조합 실험이 추가적으로 요구된다. 즉 향후 본 연구에서 제시한 응력의 비비례성을 고려한 선형 및 비선형 손상 누적 모델의 유효성 검증을 위하여 인장, 압축, 전단이 동시에 변동하면서 발전하는 실험에 대한 검증이 요구된다.
실제 해양 구조물은 매우 복잡한 형상을 가진다. 이러한 형상의 구조물이 사고 하중 등이 과대 하중을 경험할 때 재료 내부의 응력은 매우 복잡하게 변동할 것이다. 응력의 비비례성과 함께 하중 순서 효과를 동시에 고려하기 위해서는 이에 상응하는 파단 기준의 정립과 실험을 통한 재료 상수 교정이 요구된다.