Three novel hepcidin isoforms were isolated and characterized from the perciform fish species Oplegnathus fasciatus. These hepcidin isoforms (designated rbhepc5, rbhepc6 and rbhepc7)were found to share a conserved, tripartite gene structure and a considerable sequence homology one another. A comparison of their mature peptide sequences with those of other perciform hepcidin orthologs indicated that these three hepcidin isoforms as well as four other isoforms previously identified in this species, appear to belong to the HAMP2 group of hepcidin genes.Analysis of the 5′-upstream sequences showed that the proximal non-coding regions of rbhepc5~7 do not possess canonical TATA signals; instead, they harbor several binding motifs for transcription factors involved in immune modulation. Reverse transcriptase-PCR analysis demonstrated that the rbhepc5~7 are expressed predominantly in the liver, and that the transcription of rbhepc5~7 is rapidly induced in the liver, but not in other tissues, by experimental challenge with any of three different bacterial species. However, transcription of rbhepc6 appeared to be negligible under both basal and stimulated conditions, as judged by the redundancy count of randomly chosen reverse transcriptase-PCR clones.
Hepcidin, also known as liver-expressed antimicrobial peptide (LEAP), is a cysteine-rich, antimicrobial,β-sheet protein that plays a central role in the homeostatic regulation of iron content (Park et al.,2001; Atanasiu et al., 2006). Although mammalian genomes contain only one hepcidin gene (with the exception of the mouse genome, which has two),many fish genomes possess multiple hepcidin gene isoforms; the number of hepcidin isoforms is variable among fish species (Shi and Camus, 2006). Species of the order Perciformes (perch-like fishes), one of the largest teleost orders, produce various hepcidin transcripts that might be decoded from each separate genomic copy (Rodrigues et al., 2006; Huang et al.,2007; Xu et al., 2008). The species with the highest number of hepcidin isoforms identified thus far is the black porgy (
Darwinian selection driven by host-pathogen interaction (
The rockbream
A potential strategy for improving the efficiency and capacity of
>
Fish specimen and nucleic acid preparation
Rockbream juveniles (body weight 80-120 g) were purchased from a local farm and kept in 100-L laboratory tanks containing water maintained at 22±1°C throughout the experiment. Dissolved oxygen content was 5-6 ppm. A commercial pelleted flounder diet (Woosung Feed Corp., Daejeon, Korea)was fed during the 1-2 week acclimation period.
Genomic DNA was prepared from whole blood or caudal fin using the conventional SDS/proteinase K method followed by organic extraction and ethanol precipitation (Sambrook and Russell, 2001). The integrity and quantity of the prepared genomic DNA was confirmed by electrophoresis on ethidium bromide-stained 0.3%-agarose gels and spectrophotometry(Gene Quant II spectrophotometer;Pharmacia Biotech, Uppsala, Sweden). Total RNA from various tissues was purified using an RNeasy Midi Kit (Qiagen, Hilden, Germany) with DNase treatment, and the intact RNA was confirmed by determining the ratio of 28S:18S ribosomal RNA(rRNA) in a 1% MOPS/formaldehyde agarose gel.
>
Isolation of novel hepcidin genes
Based on the sequences of other teleost hepcidin genes, including
>
Characterization of newly identified rockbream hepcidin isoform sequences
The sequences of the newly identified hepcidin isoforms were compared with those of other perciform orthologs using a BLAST search of the National Centers for Biotechnology GenBank (NCBI) database(http://ncbi.nlm.nih.gov/Blast.cgi). A multiple sequence alignment of mature hepcidin peptides was created using the ClustalW program (http://align.genome.jp/). Ggene structures (exon-intron organization)of the rockbream hepcidin isoforms were compared with those of other teleost hepcidin genes compiled from GenBank. Additional potential fish hepcidin isoforms were identified by a BLAST/ Text search against the Ensembl genome database(http://www.ensembl.org/index.html) and a tBLASTn search against the NCBI database of non-human,non-mouse expressed sequence tags. Putative signal peptides were identified using the SignalP 3.0 Server(http://www.cbs.dtu.dk/services/SignalP/), and potential propeptide cleavage sites were predicted using the ProP 1.0 Server (http://www.cbs.dtu.dk/services/ProP/). Theoretical molecular masses and isoelectric points (pIs) of the hepcidin isoforms were estimated using the ExPASy ProtParam Tool (http://www.expasy.org/tools/protparam.html). Putative transcripttion factor-binding sites in the 5′-upstream regions of
>
Basal and tissue expression of rbhepc5~7 transcripts
To examine the basal expression patterns of the newly identified rockbream hepcidin isoforms, we examined the tissue distribution of their mRNAs in normal healthy juveniles using reverse transcriptase(RT)-PCR. However, the high sequence similarity among the isoforms precluded the use of conventional RT-PCR for isoform-specific amplification.Therefore, two oligonucleotide primers [qRB hepc 567 2F (5′-CACTCACTTGAGACACCGAAG-3′)and qRB hepc567 1R (5′-CAGCAAAAGCGACAC GTAAT-3′); amplicon size, 269 bp] designed to bind
Total RNA was prepared from brain, eye, fin, gill,heart, intestine, kidney, liver, muscle and spleen tissues as described above, and 2 μg of the purified total RNA from each tissue was reverse-transcribed into cDNA using an Omniscript Reverse Transcription Kit (Qiagen) according to the manufacturer’s recommendations. A reverse primer for the rockbream 18S rRNA [RB18S RV (5′-AGAATTTCACC TCTAGCGGC-3′)] was included in the reverse transcription reactions to allow for normalization as described by Lee and Nam (2009). One microliter of the resulting cDNA templates was PCR-amplified in a thermal cycler programmed for one round of initial denaturation at 94°C for 3 min and 26 cycles (for isoforms
>
Bacterial challenge and induced expression assay
To examine the induction of the newly identified hepcidin isoforms in response to inflammatory stimuli, we performed experimental challenges with non-pathogenic and pathogenic bacteria. Healthy juvenile fish (
To determine whether bacterial challenge would induce the expression of every hepcidin isoform, we prepared and sequenced RT-PCR clones from the livers of
>
Structure of newly identified rockbream hepcidin isoform genes
Our analysis showed that in addition to the four hepcidin isoforms we previously described(
Comparison of the
>
Multiple sequence alignment of mature hepcidin isoforms
Based on ProP 1.0 Server predictions of arginine and lysine propeptide cleavage sites in Perciformes hepcidin sequences, we generated the putative mature hepcidin peptide sequences of perciform hepcidin orthologs and aligned them with the putative mature peptides encoded by
Without exception, the mature HAMP1 perciform hepcidins (
Abbreviations and taxonomic positions for perciform species used in the multiple sequence alignment of predicted mature hepcidin sequences
>
Characteristics of 5′-upstream sequences
The sequences of the 5′-upstream regions of the newly isolated
>
Basal and induced expression of hepcidin isoforms
Our RT-PCR analyses showed that
Isoforms
The genomes of perciform fish species have been shown to harbor multiple hepcidin gene isoforms,many of which exhibit different structural and functional characteristics (Huang et al., 2007; Cuesta et al., 2008; Cho et al., 2009). We recently identified four hepcidin isoforms (designated
The
tripartite genomic structure that is a conserved feature of all known vertebrate hepcidin genes (Douglas et al.,2003; Shike et al., 2004; Ren et al., 2006). However,in contrast to the
A comparison of the sequences of mature perciform hepcidin peptides allowed us to categorize each peptide into either the HAMP1 or HAMP2 cluster (for nomenclature, see Hilton and Lambert, 2008). Within these clusters, the amino acid sequence homology among the mature peptides is broadly in accordance with the known taxonomic appraisal of the various species at the suborder level. Perciform hepcidins in the HAMP1 cluster share a predicted 24-aa signal peptide and a conserved Arg/Lys propeptide cleavage recognition site (RXRR or RXKR), consequently generating mature peptides of identical lengths (26 aa). Without exception, all of the HAMP1 peptides contain eight conserved Cys residues and have a conserved N-terminal motif (Gln-Ser-His-Leu/Ile-Ser).
The perciform HAMP2 cluster can be divided into two groups (I and II) based on the number of conserved Cys residues, and Group I can be further divided into three subgroups (a, b, and c) based on sequence homology and the amino acids N-terminal to the first conserved Cys residue. The predicted mature peptides of both the
It is widely agreed that the net positive charge of antimicrobial peptides is functionally important in their facilitated interactions with negatively charged microbial surfaces, and that charge-altering amino acid substitutions are expected to be important in their evolution (Tossi et al., 2000; Tennessen, 2005).Experiments with mammalian HAMP1 peptides have indicated that the overall charge of the first five Nterminal amino acids of a mature hepcidin peptide is important for its primary function in iron regulation(Nemeth et al., 2004). As in mammalian HAMP peptides, the five N-terminal amino acids of all mature perciform HAMP1 peptides have an overall negative charge (pI of 6.74). However, the majority of HAMP2 peptides, including the rockbream hepcidins, have an overall positive charge in this region (pI of 8.25-10.86). For this reason, the overall negative charge of the N-terminus of a mature HAMP1 peptide has been proposed to be an essential requirement for its interaction with ferroportin molecules, a crucial step in the hepcidin-mediated regulation of iron homeostasis (Nemeth et al., 2006).Moreover, the results of a recent molecular phylogeny study led to the hypothesis that every fish species has a HAMP1 ortholog of mammalian hepcidin that carries out dual functions (i.e., iron regulation and immune response), while the HAMP2 genes also present in certain fish species may serve only to support innate immunity but not iron regulation, since the mature HAMP2 isoforms have cationic N-terminal regions (Hilton and Lambert,2008).
We suggest that this hypothesis merits careful revision or challenge. First, HAMP1 genes may not be present in all perciform species. Although the complete genome sequences of
Unlike
Transcriptional response of the
Differential inducibility of hepcidin isoforms across tissue types under stimulated conditions has been reported in many fish species of the Perciformes superorder Acanthopterygii, which is known for its many species exhibiting multiple hepcidin genes (for review, see Hilton and Lambert, 2008). However, the mechanism responsible for the tissue-specific modulation of hepcidin isoform(s) has not yet been com-prehensively studied. In our experiments,redundancy counting of RT-PCR clones of hepatic
In summary, we have isolated three novel hepcidin isoform genes (