  PDF
OA 학술지
Theoretical Study for Hydrogen Production from an Integrated Gasification Combined Cycle System
• • ABSTRACT
Theoretical Study for Hydrogen Production from an Integrated Gasification Combined Cycle System
KEYWORD
Density functional theory , Hydrogen separation , IGCC , Palladium membrane , Renewable energy
• ### 1. Introduction

With the growing demands for energy in developing countries,sustainable energy production has become more important. Sustainable energy production can be achieved by developing renewable energy conversion technologies and increasing energy conversion efficiencies. It is also important to minimize the environmental impacts of air pollutants emitted from ener- gy conversion processes. Integrated gasification combined cycle (IGCC) is an important green energy conversion technology, as indicated in the 2009 Korean Energy Roadmap, because the gasification system can process a wide variety of carbonaceous sources, such as coal, biomass, petroleum coke, refinery residue and waste, and also enhance their energy conversion efficiencies . As shown in the schematic diagram of the IGCC system in Fig. 1, the gasification process first converts carbonaceous sources to a combustible gas. After cleaning and conditioning,the combustible gas is burned in the combustion turbine to drive an electric generator and produce heat, which can be used to generate stream in a steam turbine. This combined mode of combustion and steam turbines significantly increases the energy conversion efficiency .

### 2.1. Theoretical Background and Computational Method

The dissociative adsorption of hydrogen onto palladium was investigated using first-principle density functional theory calculations performed via the Vienna ab initio simulation package. The first-principle methods can describe the surface properties of palladium without applying empirical parameters. The density functional theory is based on the Hohenberg-Kohn theorem,which states “all properties of any system of interacting particles in an external potential is determined by the ground state particle density” [13, 14]. Kohn and Sham formulated the density functional theory via the following equation:

where E is the ground state energy of the system, T[n] the kinetic energy of non-interacting electrons, Vext(r) the external potential due to the nuclei and any other external fields, EH[n] the Hartree functional, EII the interaction between the nuclei and EXC[n] the exchange-correlation functional. In other words, the density functional theory provides the total energy of the system as a function of the atomic configuration. The reliability of the density functional theory depends on the accuracy of the approximations in the exchange-correlation function. The exchangecorrelation function EXC[n] can be written as:

where εxc[n](r) is the exchange-correlation energy per electron at point r.

One of the approximations in the exchange-correlation energy is called the local density approximation (LDA). The true exchange-correlation energy, εxc[n], is approximated using the local exchange-correlation energy, εxc LDA(n(r)), of the homogeneous election gas:

18

However, since the LDA is known to overestimate the binding energy, the density gradient in the exchange-correlation energy is included so that the non-homogeneity of the true electron density can be considered and the approximation developed:

20

This approach is called the generalized gradient approximation (GGA).

As shown in Fig. 3, this study considered a clean Pd(111) p(2×2) surface structure, consisting of an ideal periodic structure of 4 layer slabs, with several adsorption sites, such as top,face-centered cubic (fcc) and hexagonal closed packed (hcp) sites. The density functional theory provides energetic information at zero temperature and zero pressure. Further information for the realistic temperatures and pressures can be obtained using standard thermodynamics methodology [15-17]. For an ideal crystal, the surface free energy is defined by the following equation: where γ is the surface free energy per unit area, A the surface area, ΔGsurface the Gibbs free energy introduced through the surface,G the Gibbs free energy of the total system, Gsolid the Gibbs free energy from the solid bulk, and Ggas the Gibbs free energy from the homogeneous gas. Since a lower Gibbs free energy indicates a more stable state system, the most stable surface structure has the lowest surface free energy. The Gibbs free energy of adsorption (ΔGad) is determined from the difference in the surface free energy between the clean surface (γclean) and hydrogenadsorbed surface (γads), which can be used to evaluate the stability of hydrogen on the palladium surface at a given temperature and pressure:

where NH and NPd are the numbers of atoms of hydrogen and palladium, respectively, and μH the chemical potential of hydrogen.Since a more stable structure has lower surface free energy, the most stable structure of a hydrogen-adsorbed surface has the most negative Gibbs free energy of adsorption at the corresponding chemical potential of hydrogen. In addition, the Gibbs free energy is defined by several energy terms, as follows:

where Etotal is the total energy, Fvib the vibrational free energy, and Fconf the configurational free energy. Because this study evaluated the difference in the Gibbs free energies at less than 100 atm, the Fconf and pV were assumed to be negligible. The chemical potential of hydrogen in Equation (6) can also be determined by the following energy terms: where EtotalH2 and EZPEH2 are the total and zero point energies, respectively. The following adsorption energy term is also defined:

where EPd+H2, EPd and EH2 represent the energies of the hydrogenadsorbed palladium surface, the palladium bulk and the adsorbate hydrogen, respectively, and NH the number of hydrogen atoms. Then, the final Equation (10) is obtained for evaluating the stability of the hydrogen adsorbed onto the palladium surface as functions of the temperature and pressure.

### 3. Results and Discussion site showing the most negative energy, indicating the strongest binding of hydrogen. In addition, energies more negative than-0.43 eV for all adsorption sites indicates that the adsorption of hydrogen onto palladium may be classified as chemisorption. As shown from these calculation results, a study based on firstprinciple density functional theory provides information on the stability of the hydrogen binding onto the crystal surface; therefore,the first-principle method can be applied to find materials with a good capability to separate hydrogen.

### 3.2. Effects of Partial Pressure of Hydrogen and Temperature ### 4. Conclusions

First-principle density functional theory calculations were performed to investigate the stability of hydrogen adsorbed onto the palladium surface as functions of the adsorption configuration, partial pressure and temperature. As a result, hydrogen was indicated to be chemisorbed onto the palladium surface, with hydrogen expected to be stabilized on the surface at partial pressures of hydrogen above 1 atm at equilibrium. Further study is suggested to find the best alloying metal and composition of the palladium alloy for improving the hydrogen permeability and cost effectiveness of the palladium-based membrane. For the addition of a certain alloying metal to the palladium surface,the binding energy of hydrogen onto the palladium alloy can be determined as functions of the partial pressures and temperatures via theoretical calculations. The alloying material determined from the theoretical studies can be experimentally tested to confirm its performance in the production of hydrogen. Experimental tests can be carried out by locating each palladiumbased membrane in a pressure-controlled reactor. The hydrogen permeability of the membrane can be determined based on the difference in the pressures between inlet and outlet of the membrane reactor.

참고문헌
OAK XML 통계
이미지 / 테이블
• [ Fig. 1. ]  Schematic diagram of the integrated gasification combined cycle (IGCC) process . • [ Fig. 2. ]  Schematic diagram of the water-gas shift (WGS) reaction and hydrogen separation process using a palladium-based membrane. • [ Fig. 3. ]  (a) Top and (b) side views of the ideal periodic structure of the palladium surface. hcp: hexagonal closed packed sites fcc: facecentered cubic sites. • [ Fig. 4. ]  Final structure of the palladium surface with hydrogen adsorbed(shown in pink) onto the (a) fcc-fcc (b) hcp-hcp and (c) fcchcp sites (The adsorption energy for each dissociated hydrogen atom: (a) -0.583 eV (b) -0.542 eV and (c) -0.479 eV). hcp: hexagonal closed packed sites fcc: face-centered cubic sites. • [ Fig. 5. ]  Gibbs free energy of hydrogen adsorption (ΔGads) onto each adsorption site of palladium as a function of the chemical potential of hydrogen (ΔμH) at 600 K. hcp: hexagonal closed packed sites fcc:face-centered cubic sites. • [ Fig. 6. ]  Gibbs free energy of hydrogen adsorption (ΔGads) onto the fcc-fcc site of palladium as a function of temperature at 1 atm. fcc:face-centered cubic sites. (우)06579 서울시 서초구 반포대로 201(반포동)
Tel. 02-537-6389 ｜ Fax. 02-590-0571 ｜ 문의 : oak2014@korea.kr