DNA-based discrimination of species is a powerful way for morphologically otherwise similar species, like centric diatoms. Here, the author sequenced long-range nuclear ribosomal DNAs, spanning from the 18S to the D5 region of the 28S rDNA, of Stephanodiscus, particularly including a Korean isolate. By comparisons, high DNA similarities were detected from the rDNAs of nine Stephanodiscus (>99.4% in 18S rDNA, >98.0% in 28S rDNA). Their genetic distances, however, were significantly different (Kruskal-Wallis test, p < 0.01) compared to two related genera, namely Cyclotella and Discostella. In addition, genetic distances of 18S rDNAs were significantly different (Student’s t-test, p = 0.000) against those of the 28S rDNAs according to individual genera (Cyclotella, Discostella, and Stephanodiscus). Phylogenetic analyses showed that Stephanodiscus and Discostella showed a sister taxon relationship, and their clade was separated from a cluster of Cyclotella (1.00 PP, 100% BP). This suggests that Stephanodiscus has highly conserved sequences of both 18S and 28S rDNA; however, Stephanodiscus is well-separated from other freshwater centric diatoms, such as Cyclotella and Discostella, at the generic level.
The centric diatom
Recently, DNA-based taxonomy is widely used for the discrimination of small-size organisms, including diatoms and dinoflagellates (Karsten
In the present study, the author sequenced nuclear rDNA, spanning the 18S to the 28S rDNA, of
Water samples were collected from Paldang Reservoir (a reservoir in Han River) of Korea, when
>
DNA extraction and PCR amplification
A total of 50 ml clonal cultures were harvested by centrifugation centrifugation at 8,000 rpm for 15 min. The concentrated cells were transferred to 1.5 ml micro tubes, 100 μl of TE buffer (10 mM Tris-HCl, pH 8.0 and 1 mM EDTA) was added and the tubes were stored at ?20℃ until DNA extraction. Genomic DNA was isolated from the stored cells using the DNeasy Plant mini kit (Qiagen, Valencia, CA).
Polymerase chain reaction (PCR) was subject to amplifythe 18S-28S rDNA of Stephanodiscus genomic DNA. Inthis case, the author used a set of PCR primers that targetedto bind nuclear 18S rDNA (a forward AT18F01, 5’-ACC TGG TTG ATC CTG CCA GTA G-3’) and 28SrDNA (a reverse PM28-R1318, 5’-TCG GCA GGT GAGTTG TTA CAC AC-3’), which are specific for diatoms(Jung et al. 2009). PCR was performed with 50 μl reactionmixtures containing 30.5 μl sterile distilled water, 5 μl 10x LA PCR buffer II (TaKaRa, Kyoto, Japan), 8 μl dNTPmix (4 mM), 5 μl of each primer (5 M), 0.5 μl LA Taqpolymerase (2.5 U), and 1 μl of template. PCR cyclingwas performed in a Bio-Rad iCycler (Bio-Rad, Hercules,CA) with 94°C for 2 min, following 35 cycles of 94°C for20 sec, 55°C for 30 sec, and 72°C for 2 min, and a finalextension at 72°C for 10 min. Resulting PCR productswere electrophoresed in a 1.0% agarose gel (Promega,Madison, WI), stained with ethidium bromide, and visualizedby ultraviolet transillumination.
For DNA sequencing, desired PCR products were purified with a QIAquick PCR purification Kit (Qiagen GmbH, Germany). DNA sequencing reactions were performed in a ABI PRISM® BigDyeTM? Terminator Cycle Sequencing Ready Reaction Kit (PE Biosystems, Foster City, CA) using the PCR products (2 μl) as the template and 10 picomoles of the above PCR and internal walking primers. Labeled DNA fragments were analyzed on an automated DNA sequencer (Model 3700, Applied Biosystems, Foster City, CA).
Editing and contig assembly of DNA sequences were performed using Sequencher 4.1.4 (Gene Codes, Ann Arbor, MI). The coding rDNAs were identified by comparison with those of other diatoms, including
>
Comparisons of Stephanodiscus rDNA
BLAST (The Basic Local Alignment Search Tool) searches were performed with the present rDNA sequence data and the available DNA sequences in the National Center for Biotechnology Information (NCBI) database. In addition, DNA sequences of
Origins of the centric diatoms, Stephanodiscus, Cyclotella and Discostella, and their DNA sequence GenBank accession numbers
>
Phylogenetic relationships of Stephanodiscus species
Phylogenetic analyses of the freshwater centric diatoms were carried out, following our previous work (Jung
Sequence length and G+C content (%) measured from the Stephanodiscus rDNA determined in the present study
>
Nuclear rDNA of S. hantzschii and Korean Stephanodiscus
In the present study, DNA sequences of nuclearrDNAs, spanning the 18S to the D5 domain of the 28SrDNA, were determined from S. hantzschii #UTCC 267(3,768 bp; 47.9% GC) and a Korean Stephanodiscus sp.#KHR001 (3,682 bp; 48.3% GC), as shown in Table 2.Their gene structures were organized in the typicaleukaryotic fashion of rDNA (i.e. 18S-ITS1-5.8S-ITS2-28S).In general, the 28S rDNA, the largest rDNA codingregion, contains twelve hyper-variable domains(Hassouna et al. 1984; Lenaers et al. 1989), often designatedas divergent (D) domains. Of them, the presentsequences included D1 to D5 of the 28S rDNA. Uponcomparisons, most sequences available in public databases(e.g. DDBJ, EMBL, NCBI) were revealed fromD1/D2 domains of the 28S rDNA, while the others containmuch genetic information (Ki and Han 2007). Thepresent data included wider range of the 28S rDNA fromthe genus Stephanodiscus. With these data, the authorevaluated their molecular characteristics and compared 2representatives of Stephanodiscus with freshwater centricdiatom data available in the NCBI. Particularly, completelengths of the 18S rDNA sequences of S. hantzschii#UTCC 267 and Stepahnodiscus sp. #KHR001 were estimatedto be 1,805 bp, after incorporating undeterminednucleotides of the 18S rDNA 5’end into the present 18Ssequences, taking into account of available data (e.g.AM712618, DQ093370) recorded in GenBank (e.g.AM712618, DQ093370). These were nearly identical tothose of other relatives, including Cyclotella andDiscostella (Jung et al. 2009).
By database searches, the author found many partial 18S, 28S rDNA sequences revealed from
Similarity scores between 9 pairs of the aligned sequence data of the nearly complete 18S rDNA (above diagonal) and partial 28S rDNA (below diagonal) from nine selected species of Stephanodiscus
>
Molecular similarities and genetic divergence of rDNA
Molecular comparisons showed that a Korean isolate of
>
Phylogenetic relationships of freshwater centric diatoms
Molecular relationships of three major freshwater centric diatoms, namely
In addition to this, phylogenetic analyses of partial 28S rDNA of the three centric diatom groups showed similar branch patterns, when compared with those of 18S rDNA phylogenies.
>
Molecular divergences of 18S, ITS, 28S rDNAs
The present rDNA sequences of
Nucleotide divergences of the 18S and 28S rDNA sequences were compared, using pairwise genetic distances calculated with the Kimura two-parameter model (Table 4). In most cases, DNA divergences within nine Stephanodiscus (listed in Table 3) were considerably low both in 18S (less than 0.2%) and in 28S rDNA (less than 1.0%). By comparisons, divergences of the 28S rDNA were significantly different compared to the 18S rDNA (Student’s t-test, p = 0.000). In addition, divergences of individual 18S, 28S rDNA among the three groups, Cyclotella, Discostella, and Stephanodiscus, were significantly different according to the Kruskal-Wallis Test (p < 0.01). By comparisons of Stephanodiscus with Cyclotella and Discostella, high genetic divergences were calculated from 18S (Stephanodiscus versus Cyclotella, 5.4%, SD = 0.45) and 28S rDNA (Stephanodiscus versus Cyclotella, 15.6%, SD = 2.9). These support that Stephanodiscus has high similarities of both 18S and 28S rDNA (Table 3), but Cyclotella and Discostella shows low similarities in both genes (Jung et al. 2009).
Comparisons of 18S and 28S rDNA nucleotide divergences based on corrected p-distances of Stephanodiscus (St), Stephanodiscus versus Cyclotella (St vs. Cy) and Stephanodiscus versus Discostella (St vs. Di). Genetic distances between each paired sequence from 20 species listed in Table 1 were calculated with Kimura two-parameter model.
>
DNA identity of Stephanodiscus from Paldang Reservoir
The centric diatoms, including
In conclusion, the present study determined longrange sequences of rDNA from