Plasma Textured Glass Surface Morphologies for Amorphous Silicon Thin Film Solar Cells-A review

  • cc icon
  • ABSTRACT

    The surface morphology of the front transparent conductive oxide (TCO) films plays a vital role in amorphous silicon thin film solar cells (a-Si TFSCs) due to their high transparency, conductivity and excellent light scattering properties. Recently, plasma textured glass surface morphologies received much attention for light trapping in a-Si TFSCs. We report various plasma textured glass surface morphologies for the high efficiency of a-Si TFSCs. Plasma textured glass surface morphologies showed high rms roughness, haze ratio with micro- and nano size surface features and are proposed for future high efficiency of a-Si TFSCs.


  • KEYWORD

    Light trapping , ICP-RIE , Multi-textured glass , Rms roughness , Haze ratio , a-Si thin film solar cell

  • 1. Konagai M. (2011) [Jpn. J. Appl. Phys.] Vol.50 P.030001
  • 2. Jovanov V., Palanchoke U., Magnus P., Stiebig H., Hupkes J., Sichanugrist P., Konagai M., Wiesendanger S., Rockstuhl C., Knipp D. (2013) [Opt. Express] Vol.21 P.A595
  • 3. Zeman M., Isabella O., Jager K., Santbergen R., Solntsev S., Topic M. (2012) [J. Krc, Energy Procedia] Vol.15 P.189
  • 4. Isabella O., Krc J., Zeman M. (2010) [Appl. Phys. Lett.] Vol.97 P.101106
  • 5. Hussain S. Q., Ahn S., Park H., Kwon G., Raja J., Lee Y., Balaji N., Kim H., Le A.H.T., Yi J. (2013) [Vacuum] Vol.94 P.87
  • 6. Hongsingthong A., Krajangsang T., Yunaz I. A., Miyajima S., Konagai M. (2010) [Appl. Phys. Express] Vol.3 P.051102
  • 7. Hongsingthong A., Krajangsang T., Limmanee A., Sriprapha K., Sritharathikhun J., Konagai M. (2013) [Thin Solid Films] Vol.537 P.291
  • 8. Hongsingthong A., Krajangsang T., Janthong B., Sichanugrist P., Konagai M. (2011) [Photovoltaic Specialists Conference (PVSC)] Vol.37 P.000791
  • 9. Sai H., Koida T., Matsui T., Yoshida I., Saito K., Kondo M. (2013) [Appl. Phys. Express] Vol.6 P.104101
  • 10. Jansen H., Gardeniers H., Boer. M., Elwenspoek M., Fluitman J. (1996) [J. Micromech. Microeng.] Vol.6 P.14
  • 11. Janthong B., Moriya Y., Hongsingthong A., Sichanugrist P., Konagai M. (2013) [Sol. Energy Mater. Sol. Cells] Vol.119 P.209
  • 12. Jovanov V., Xu X., Shrestha S., Schulte M., Hupkes J., Zeman M., Knipp D. (2013) [Sol. Energy Mater. Sol. Cells.] Vol.112 P.182
  • 13. Tamang A., Hongsingthong A., Sichanugrist P., Jovanov V., Konagai M., Knipp D. (2014) [IEEE Journal of Photovoltaics] Vol.4 P.16
  • 14. Feltrin A., Meguro T., Van Assche E., Suezaki T., Ichikawa M., Kuchiyama T., Adachi D., Inaki O., Yoshikawa K., Koizumi G., Uzu H., Ueda H., Uto T., Fujimoto T., Irie T., Hayakawa H., Nakanishi N., Yoshimi M., Yamamoto K. (2013) [Sol. Energy Mater. Sol. Cells] Vol.119 P.219
  • 15. Battaglia C., Hsu C. M., Soderstrom K., Escarre J., Haug F. J., Charriere M., Boccard M., Despeisse M., Alexander D.T.L., Cantoni M., Cui Y., Ballif C. (2012) [ACS Nano] Vol.6 P.2790
  • 16. Li X., Abe T., Esashi M. (2001) [Sens. Actuators A] Vol.87 P.139
  • 17. Lallement L., Rhallabi A., Cardinaud C., Peignon Fernandez M.C. (2011) [J. Vac. Sci. Technol. A] Vol.29 P.051304
  • 18. Park J. H., Lee N. E., Lee J., Park J. S., Park H. D. (2005) [Microelectron. Eng.] Vol.82 P.119
  • 19. Hussain S. Q., Kim S., Ahn S., Balaji N., Lee Y., Lee J. H., Yi J. (2014) [Sol. Energy Mater. Sol. Cells] Vol.122 P.130
  • 20. Hussain S. Q., Kim S., Ahn S., Park H., Le A., Lee S., Lee Y., Lee J., Yi J. (2014) [Met. Mater. Int.] Vol.20 P.565
  • 21. Zhang B., Dong X., Xu X., Zhao P., Wu J. (2008) [Sol. Energy Mater. Sol. Cells] Vol.92 P.1224
  • 22. Gessert T. A., Burst J., Li X., Scott M., Coutts T. J. (2011) [Thin Solid Films] Vol.519 P.7146
  • 23. Yen W. T., Lin Y. C., Ke J. H. (2010) [Appl. Surf. Sci.] Vol.257 P.960
  • 24. Addonizio M. L., Spadoni A., Antonaia A. (2013) [Appl. Surf. Sci.] Vol.287 P.311
  • 25. Bancha J., Aswin H., Yuki M., Porponth S., Christophe R. W., Makoto K. (2012) [Jpn. J. Appl. Phys.] Vol.51 P.10-14
  • 26. Mizuhashi M., Gotoh Y., Adachi K. (1998) [Jpn. J. Appl. Phys.] Vol.27 P.2053
  • 27. Zhu H., Hupkes J., Bunte E., Owen J., Huang S. M. (2011) [Sol. Energy Mater. Sol. Cells] Vol.95 P.964
  • 28. Wang F. H., Yang C. F., Lee Y. H. (2014) [Nanoscale Res. Lett.] Vol.9 P.97
  • 29. Kondo T., Sawada Y., Akiyama K., Funakubo H., Kiguchi T., Seki S., Wang M. H., Uchida T. (2008) [Thin Solid Films] Vol.516 P.5864
  • 30. Kondo T., Funakubo H., Akiyama K., Enta H., Seki Y., Wang M. H., Uchida T., Sawada Y. (2009) [J. Cryst. Growth] Vol.311 P.642
  • 31. Wang C., Mao Y., Zeng X. (2013) [Appl Phys A] Vol.110 P.41
  • 32. Yang H. H., Kim H. W., So S. Y., Park G. C., Lee J., Na K. J. (2013) [Trans. Electr. Electron. Mater.] Vol.14 P.90
  • 33. Muller J., Rech B., Springer J., Vanecek M. (2004) [Sol. Ener.] Vol.77 P.917
  • 34. Lee Y. J., Park H., Ju M., Kim Y., Park J., Vinh Ai D., Hussain S. Q., Lee Y., Ahn S., Yi J. (2014) [Energy] Vol.66 P.20
  • 35. Park H., Lee J., Kim H., Kim D., Raja J., Yi J. (2013) [Appl. Phys. Lett.] Vol.102 P.191602
  • 36. Raja J., Jang K., Hussain S. Q., Chatterjee S., Velumani S., Balaji N., Yi J. S. (2015) [Appl. Phys. Lett.] Vol.106 P.033501
  • 37. Abe Y., Kagei T., Sichanugrist P., Konagai M. (2014) [IEEE Journal of Photovoltaics] Vol.4 P.1374
  • 38. Yunaz I. A., Hongsingthong A., Zhang L., Miyajima S., Konagai M. (2010) [Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE] P.001592
  • 39. Hussain S. Q., Kwan G., Ahn S., Kim S., Park H., T Le A. H., Shin C., Kim S., Khan S., Raja J., Balaji N., Velumani S., Pribat D., Yi J. (2015) [Vacuum] Vol.117 P.91
  • 40. Chen T. G., Yu P., Tsai Y., Shen C. H., Shieh J. M., Tsai M. A., Kuo H. C. (2012) [Optics Express] Vol.20 P.A412
  • 41. Bunte E., Zhang W., Hupkes J. (2010) [J. Vac. Sci. Technol. A] Vol.28 P.1255
  • 42. Yang G., Swaaij R.A.C.M.M.V., Tan H., Isabella O., Zeman M. (2013) [Sol. Energy Mater. Sol. Cells] Vol.133 P.156
  • 43. Ke C., Peters M., Huang Y., Widenborg P. I., Aberle A. G. (2012) [Energy Procedia] Vol.25 P.43
  • 44. Hupkes J., Owen J. I., Pust S. E., Bunte E. (2012) [Chem. Phys. Chem.] Vol.13 P.66
  • 45. Beyer W., Hupkes J., Stiebig H. (2007) [Thin Solid Films] Vol.516 P.147
  • 46. Haug F. J., Ballif C. (2015) [Energy Environ. Sci.] Vol.8 P.824
  • 47. Shah A. V., Platz R., Keppner H. (1995) [Sol. Energy Mater. Sol. Cells] Vol.38 P.501
  • 48. Zhang W., Paetzold U. W., Meier M., Gordijn A., Hupkes J., Merdzhanova T. (2014) [Energy Procedia] Vol.44 P.151
  • 49. Sahraei N., Venkataraj S., Aberle A. G., Peters I. M. (2013) [Energy Procedia] Vol.33 P.166
  • 50. Steinbruchel C. (1983) [J. Electrochem. Soc.] Vol.130 P.648
  • 51. Ichiki T., Sugiyama Y., Ujiie T., Horiike Y. (2003) [J. Vac. Sci. Technol. B] Vol.21 P.2188
  • 52. Kuo Y., Crowe J. R. (1989) [Proc. SPIE] Vol.1037 P.103
  • 53. Zarowin C. B. (1983) [J. Electrochem. Soc.] Vol.130 P.1144
  • 54. Wada H., Nishikubo K., Sichanugrist P., Konagai M. (2014) [Can. J. Phys.] Vol.92 P.920
  • 55. Hussain S. Q., Kwan G., Ahn S., Kim S., Balaji N., Le A.H.T., Park H., Shin C., Kim S., Khan S., Raja J., Velumani S., Lee Y. J., Pribat D., Yi J. (2015) [Appl. Phys. A] Vol.120 P.823
  • 56. Mizuhashi M., Gotoh Y., Adachi K. (1988) [Jpn. J. Appl. Phys.] Vol.27 P.2053
  • 57. Sato K., Gotoh Y., Hayashi Y., Adachi K., Nishimura H. (1990) [Rep. Res. Lab., Asahi Glass Co, Ltd] Vol.40 P.233
  • 58. Wenas W. W., Yamada A., Konagai M., Takahashi K. (1991) [Jpn. J. Appl. Phys.] Vol.30 P.L441
  • 59. Fay S., Kroll U., Bucher C., Vallat-Sauvain E., Shah A. (2005) [Sol. Energy Mater. Sol. Cells] Vol.86 P.385
  • 60. Iida H., Shiba N., Mishuku T., Ito A., Karasawa H., Yamanaka M., Hayashi Y. (1982) [Electron Device Letters, IEEE] Vol.3 P.114
  • 61. Iida H., Shiba N., Mishuku T., Karasawa H., Ito A., Yamanaka M., Hayashi Y. (1983) [Electron Device Letters, IEEE] Vol.4 P.157
  • 62. Krc J., Lipovsek B., Bokalic M., Campa A., Oyama T., Kambe M., Matsui T., Kondo M., Topic M., Sai H. (2010) [Thin Solid Films] Vol.518 P.3054
  • 63. Fay S., Steinhauser J., Oliveira N., Sauvain E. V., Ballif C. (2007) [Thin Solid Films] Vol.515 P.8558
  • 64. Donnelly V. M., Kornblit A. (2013) [J. Vac. Sci. Technol. A] Vol.31 P.050825
  • 65. Spierings J.A.C.M. (1999) [J. Mater. Sci.] Vol.28 P.6261
  • 66. Leech P. W. (1999) [Vacuum] Vol.55 P.191
  • 67. Li X., Abe T., Esashi M. (2001) [Sensor Actuat A] Vol.87 P.139
  • 68. Kline L. E. (1986) [IEEE Trans Plasma Sci.] Vol.14 P.145
  • [Fig. 1.] Various light trapping surface morphologies for the transparent conductive oxides (TCOs) films. Fig. 1 (a), (b) are reproduced with permission from [46], F. -J. Haug et al., Light management in thin fllm silicon solar cells, Energy Environ. Sci.,8 (2015) 824. Permission granted. License number 3679260160905 Copyrightⓒ Royal Society of Chemistry. Fig. 1 (c) is reproduced with permission from [1], M. Konagai, Present Status and Future Prospects of Silicon Thin-Film Solar Cells, Jpn. J. Appl. Phys. 50 (2011) 030001. Permission granted Copyright ⓒ The Japan Society of Applied Physics. Fig. 1 (d) is reproduced with permission from [6], A. Hongsingthong et al., ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells, Appl. Phys. Exp.,3 (2010) 051102. Permission granted.Copyrightⓒ The Japan society of Applied Physics.
    Various light trapping surface morphologies for the transparent conductive oxides (TCOs) films. Fig. 1 (a), (b) are reproduced with permission from [46], F. -J. Haug et al., Light management in thin fllm silicon solar cells, Energy Environ. Sci.,8 (2015) 824. Permission granted. License number 3679260160905 Copyrightⓒ Royal Society of Chemistry. Fig. 1 (c) is reproduced with permission from [1], M. Konagai, Present Status and Future Prospects of Silicon Thin-Film Solar Cells, Jpn. J. Appl. Phys. 50 (2011) 030001. Permission granted Copyright ⓒ The Japan Society of Applied Physics. Fig. 1 (d) is reproduced with permission from [6], A. Hongsingthong et al., ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells, Appl. Phys. Exp.,3 (2010) 051102. Permission granted.Copyrightⓒ The Japan society of Applied Physics.
  • [Table 1.] Various plasma textured glass surface morphologies for solar cell applications.
    Various plasma textured glass surface morphologies for solar cell applications.
  • [Fig. 2.] SEM images of textured glass substrates for various etching times. The rms roughness of each textured glass is also shown. Reproduced with permission from [6], A. Hongsingthong et al., ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells, Appl. Phys. Exp., 3 (2010) 051102. Permission granted. Copyright ⓒ The Japan society of Applied Physics.
    SEM images of textured glass substrates for various etching times. The rms roughness of each textured glass is also shown. Reproduced with permission from [6], A. Hongsingthong et al., ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells, Appl. Phys. Exp., 3 (2010) 051102. Permission granted. Copyright ⓒ The Japan society of Applied Physics.
  • [Fig. 3.] SEM micrographs of soda-lime glasses with various etching conditions: a) 0 W/cm2; b) 1.5 W/cm2; c) 10 Pa; and d) 13 Pa. Reproduced with permission from [7], A. Hongsingthong et al., Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin fllm solar cells, Thin Solid Films, 537, (2013) 291. Permission granted. Copyright ⓒ 2013 Elsevier.
    SEM micrographs of soda-lime glasses with various etching conditions: a) 0 W/cm2; b) 1.5 W/cm2; c) 10 Pa; and d) 13 Pa. Reproduced with permission from [7], A. Hongsingthong et al., Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin fllm solar cells, Thin Solid Films, 537, (2013) 291. Permission granted. Copyright ⓒ 2013 Elsevier.
  • [Fig. 4.] SEM micrographs of RIE-etched white glass substrate under various glass etching times: (a) no etching; (b) 60 min; (c) 120 min; and (d) 150 min. Reproduced with permission from [54], H. Wada et al., Improved light trapping effect for thin-fllm silicon solar cells fabricated on double-textured white glass substrate, Can. J. Phys., 92, (2014) 920. Permission granted. License number 3681950779704. Copyright ⓒ 2014 NRC Research Press.
    SEM micrographs of RIE-etched white glass substrate under various glass etching times: (a) no etching; (b) 60 min; (c) 120 min; and (d) 150 min. Reproduced with permission from [54], H. Wada et al., Improved light trapping effect for thin-fllm silicon solar cells fabricated on double-textured white glass substrate, Can. J. Phys., 92, (2014) 920. Permission granted. License number 3681950779704. Copyright ⓒ 2014 NRC Research Press.
  • [] 
  • [] 
  • [] 
  • [Fig. 5.] SEM images (top and cross sectional view) of the ICP-RIE textured corning glass with various pattern sizes. Reproduced with permission from [5], S. Q. Hussain et al., Light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high haze ratio, Vacuum, 94, (2013) 87. Permission granted. License number 3679461402631. Copyright ⓒ 2013 Elsevier.
    SEM images (top and cross sectional view) of the ICP-RIE textured corning glass with various pattern sizes. Reproduced with permission from [5], S. Q. Hussain et al., Light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high haze ratio, Vacuum, 94, (2013) 87. Permission granted. License number 3679461402631. Copyright ⓒ 2013 Elsevier.