Quantification of Load Dependent Brain Activity in Parametric N-Back Working Memory Tasks using Pseudo-continuous Arterial Spin Labeling (pCASL) Perfusion Imaging

  • cc icon
  • ABSTRACT

    Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.


  • KEYWORD

    N-back working memory , cerebral blood flow , load ef fects , pseudo-continuous arterial spin labeling (pCASL)

  • 1. Aguirre G. K., Detre J. A., Zarahn E., Alsop D. C. (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. [Neuroimage] Vol.15 P.488-500 google doi
  • 2. Bangen K. J., Restom K., Liu T. T., Jak A. J., Wierenga C. E., Salmon D. P. (2009) Differential age effects on cerebral blood flow and BOLD response to encoding: associations with cognition and stroke risk. [Neurobiol Aging] Vol.30 P.1276-1287 google doi
  • 3. Binder J. R., Frost J. A., Hammeke T. A., Bellgowan P. S., Rao S. M., Cox R. W. (1999) Conceptual processing during the conscious resting state. A functional MRI study. [J Cogn Neurosci] Vol.11 P.80-95 google doi
  • 4. Bokde A. L., Karmann M., Born C., Teipel S. J., Omerovic M., Ewers M. (2010) Altered brain activation during a verbal working memory task in subjects with amnestic mild cognitive impairment. [J Alzheimers Dis] Vol.21 P.103-118 google
  • 5. Braver T. S., Cohen J. D., Nystrom L. E., Jonides J., Smith E. E., Noll D. C. (1997) A parametric study of prefrontal cortex involvement in human working memory. [Neuroimage] Vol.5 P.49-62 google doi
  • 6. Callicott J. H., Mattay V. S., Verchinski B. A., Marenco S., Egan M. F., Weinberger D. R. (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. [Am J Psychiatry] Vol.160 P.2209-2215 google doi
  • 7. Cohen J. D., Perlstein W. M., Braver T. S., Nystrom L. E., Noll D. C., Jonides J. (1997) Temporal dynamics of brain activation during a working memory task. [Nature] Vol.386 P.604-608 google doi
  • 8. Cox R. W. (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. [Comput Biomed Res] Vol.29 P.162-173 google doi
  • 9. Dai W., Garcia D., de Bazelaire C., Alsop D. C. (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. [Magn Reson Med] Vol.60 P.1488-1497 google doi
  • 10. Detre J. A., Leigh J. S., Williams D. S., Koretsky A. P. (1992) Perfusion imaging. [Magn Reson Med] Vol.23 P.37-45 google doi
  • 11. Duong T. Q., Kim D. S., Ugurbil K., Kim S. G. (2001) Localized cerebral blood flow response at submillimeter columnar resolution. [Proc Natl Acad Sci U S A] Vol.98 P.10904-10909 google doi
  • 12. Fleisher A. S., Podraza K. M., Bangen K. J., Taylor C., Sherzai A., Sidhar K. (2009) Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. [Neurobiol Aging] Vol.30 P.1737-1748 google doi
  • 13. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Proc Natl Acad Sci U S A] Vol.102 P.9673-9678 google doi
  • 14. Garraux G., Hallett M., Talagala S. L. (2005) CASL fMRI of subcortico-cortical perfusion changes during memory-guided finger sequences. [Neuroimage] Vol.25 P.122-132 google doi
  • 15. Greicius M. D., Krasnow B., Reiss A. L., Menon V. (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. [Proc Natl Acad Sci U S A] Vol.100 P.253-258 google doi
  • 16. Hampson M., Driesen N. R., Skudlarski P., Gore J. C., Constable R. T. (2006) Brain connectivity related to working memory performance. [J Neurosci] Vol.26 P.13338-13343 google doi
  • 17. Jansma J. M., Ramsey N. F., Coppola R., Kahn R. S. (2000) Specific versus nonspecific brain activity in a parametric N-back task. [Neuroimage] Vol.12 P.688-697 google doi
  • 18. Jonides J., Schumacher E. H., Smith E. E., Lauber E. J., Awh E., Minoshima S. (1997) Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET. Vol.9 P.462-475 google
  • 19. Kensinger E. A., Shearer D. K., Locascio J. J., Growdon J. H., Corkin S. (2003) Working memory in mild Alzheimer’s disease and early Parkinson’s disease. [Neuropsychology] Vol.17 P.230-239 google doi
  • 20. Kim J., Whyte J., Wang J., Rao H., Tang K. Z., Detre J. A. (2006) Continuous CBF changes during sustained attention and working memory tasks. [Neuroimage] Vol.31 P.376-385 google doi
  • 21. Kirschen M. P., Chen S. H., Schraedley-Desmond P., Desmond J. E. (2005) Load-and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. [Neuroimage] Vol.24 P.462-472 google doi
  • 22. Lim J., Wu W.C., Wang J., Detre J. A., Dinges D. F., Rao H. (2010) Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. [Neuroimage] Vol.49 P.3426-3435 google doi
  • 23. Lin P., Hasson U., Jovicich J., Robinson S. (2011) A neuronal basis for tasknegative responses in the human brain. [Cereb Cortex] Vol.21 P.821-830 google doi
  • 24. Luh W. M., Wong E. C., Bandettini P. A., Ward B. D., Hyde J. S. (2000) Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T(1)-based tissue identification. [Magn Reson Med] Vol.44 P.137-143 google doi
  • 25. Mazoyer B., Zago L., Mellet E., Bricogne S., Etard O., Houde O. (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. [Brain Res Bull] Vol.54 P.287-298 google doi
  • 26. McKiernan K. A., Kaufman J. N., Kucera-Thompson J., Binder J. R. (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. [J Cogn Neurosci] Vol.15 P.394-408 google doi
  • 27. Mildner T., Trampel R., Moller H. E., Schafer A., Wiggins C. J., Norris D. G. (2003) Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. [Magn Reson Med] Vol.49 P.791-795 google doi
  • 28. Miller K. L., Luh W. M., Liu T. T., Martinez A., Obata T., Wong E. C. (2001) Nonlinear temporal dynamics of the cerebral blood flow response. [Hum Brain Mapp] Vol.13 P.1-12 google doi
  • 29. Ogawa S., Menon R. S., Tank D. W., Kim S. G., Merkle H., Ellermann J. M. (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. [Biophys J] Vol.64 P.803-812 google doi
  • 30. Olson I. R., Rao H., Moore K. S., Wang J., Detre J. A., Aguirre G. K. (2006) Using perfusion fMRI to measure continuous changes in neural activity with learning. [Brain Cogn] Vol.60 P.262-271 google doi
  • 31. Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. [Hum Brain Mapp] Vol.25 P.46-59 google doi
  • 32. Pfefferbaum A., Chanraud S., Pitel A. L., Muller-Oehring E., Shankaranarayanan A., Alsop D. C. (2011) Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. [Cereb Cortex] Vol.21 P.233-244 google doi
  • 33. Poline J. B., Worsley K. J., Evans A. C., Friston K. J. (1997) Combining spatial extent and peak intensity to test for activations in functional imaging. [Neuroimage] Vol.5 P.83-96 google doi
  • 34. Raichle M. E. (2006) Neuroscience. The brain’s dark energy. [Science] Vol.314 P.1249-1250 google doi
  • 35. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001) A default mode of brain function. [Proc Natl Acad Sci U S A] Vol.98 P.676-682 google doi
  • 36. Raichle M. E., Mintun M. A. (2006) Brain work and brain imaging. [Annu Rev Neurosci] Vol.29 P.449-476 google doi
  • 37. Rao H., Wang J., Tang K., Pan W., Detre J. A. (2007) Imaging brain activity during natural vision using CASL perfusion fMRI. [Hum Brain Mapp] Vol.28 P.593-601 google doi
  • 38. Shulman G. L., Fiez J. A., Corbetta M., Buckner R. L., Miezin F. M., Raichle M. E. (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. [J Cogn Neurosci] Vol.9 P.16 google
  • 39. Talagala S. L., Noll D. C. (1998) Functional MRI using steady-state arterial water labeling. [Magn Reson Med] Vol.39 P.179-183 google doi
  • 40. Tomasi D., Ernst T., Caparelli E. C., Chang L. (2006) Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla. [Hum Brain Mapp] Vol.27 P.694-705 google doi
  • 41. Valera E. M., Faraone S. V., Biederman J., Poldrack R. A., Seidman L. J. (2005) Functional neuroanatomy of working memory in adults with attention-deficit/ hyperactivity disorder. [Biol Psychiatry] Vol.57 P.439-447 google doi
  • 42. Veltman D. J., Rombouts S. A., Dolan R. J. (2003) Maintenance versus manipulation in verbal working memory revisited: an fMRI study. [Neuroimage] Vol.18 P.247-256 google doi
  • 43. Wang J., Aguirre G. K., Kimberg D. Y., Detre J. A. (2003) Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T. [Neuroimage] Vol.19 P.1449-1462 google doi
  • 44. Wang J., Aguirre G. K., Kimberg D. Y., Roc A. C., Li L., Detre J. A. (2003) Arterial spin labeling perfusion fMRI with very low task frequency. [Magn Reson Med] Vol.49 P.796-802 google doi
  • 45. Wang J., Li L., Roc A. C., Alsop D. C., Tang K., Butler N. S. (2004) Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla. [Magn Reson Imaging] Vol.22 P.1-7 google doi
  • 46. Wang J., Rao H., Wetmore G. S., Furlan P. M., Korczykowski M., Dinges D. F. (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. [Proc Natl Acad Sci U S A] Vol.102 P.17804-17809 google doi
  • 47. Wang J., Zhang Y., Wolf R. L., Roc A. C., Alsop D. C., Detre J. A. (2005) Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. [Radiology] Vol.235 P.218-228 google doi
  • 48. Williams D. S., Detre J. A., Leigh J. S., Koretsky A. P. (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. [Proc Natl Acad Sci U S A] Vol.89 P.212-216 google doi
  • 49. Wu W. C., Fernandez-Seara M., Detre J. A., Wehrli F. W., Wang J. (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. [Magn Reson Med] Vol.58 P.1020-1027 google doi
  • 50. Xu G., Rowley H. A., Wu G., Alsop D. C., Shankaranarayanan A., Dowling M. (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. [NMR Biomed] Vol.23 P.286-293 google
  • 51. Yang Y., Engelien W., Pan H., Xu S., Silbersweig D. A., Stern E. (2000) A CBF-based event-related brain activation paradigm: characterization of impulse-response function and comparison to BOLD. [Neuroimage] Vol.12 P.287-297 google doi
  • 52. Ye F. Q., Berman K. F., Ellmore T., Esposito G., van Horn J. D., Yang Y. (2000) H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. [Magn Reson Med] Vol.44 P.450-456 google doi
  • 53. Ye F. Q., Smith A. M., Mattay V. S., Ruttimann U. E., Frank J. A., Weinberger D. R. (1998) Quantitation of regional cerebral blood flow increases in prefrontal cortex during a working memory task: a steady-state arterial spintagging study. [Neuroimage] Vol.8 P.44-49 google doi
  • 54. Yee S. H., Liu H. L., Hou J., Pu Y., Fox P. T., Gao J. H. (2000) Detection of functional MRI. [Neuroreport] Vol.11 P.2533-2536 google doi
  • [] 
  • [Table 1.] Behavior data of the four working memory task loads
    Behavior data of the four working memory task loads
  • [Table 2.] Quantitative CBF of the whole brain
    Quantitative CBF of the whole brain
  • [Figure 1.] Paired t-maps between the three active working memory task conditions and the 0 back baseline vigilance task condition based on quantified CBF. p < 0.05 corrected. ‘L’ denotes the left hemisphere of the brain and ‘R’ denotes the right hemisphere.
    Paired t-maps between the three active working memory task conditions and the 0 back baseline vigilance task condition based on quantified CBF. p < 0.05 corrected. ‘L’ denotes the left hemisphere of the brain and ‘R’ denotes the right hemisphere.
  • [Figure 2.] Trend t-maps across the four working memory conditions based on quantified CBF. p < 0.05 corrected. ‘L’ denotes the left hemisphere of the brain and ‘R’ denotes the right hemisphere.
    Trend t-maps across the four working memory conditions based on quantified CBF. p < 0.05 corrected. ‘L’ denotes the left hemisphere of the brain and ‘R’ denotes the right hemisphere.
  • [Figure 3.] The average quantitative CBF values in the TNN and TPN ROIs (A), in the ROIs which exhibited linearly decreasing CBF (B), in the cortical ROIs which exhibited linearly increasing CBF (C), in the subcortical ROIs which exhibited linearly increasing CBF (D), and in the cerebellar ROIs which exhibited linearly increasing CBF (E) from 0b to 3b. Bars labeled in blue, cyan, pink and red demonstrate the CBF values under 0b, 1b, 2b and 3b, separately. TNN: task negative network; TPN: task positive network. PCC: posterior cingulate cortex; MPFC: medial prefrontal cortex; laTEMP: left anterior temporal gyrus; raTEMP: right anterior temporal gyrus. lIPL: left inferior parietal lobule. rIPL: right inferior parietal lobule. lMFG: left middle frontal gyrus; rMFG: right middle frontal gyrus; SMA: supplementary motor area; lpreCG: left precentral cingulate gyrus; ldlPFC: left dorsolateral prefrontal cortex; rdlPFC: right dorsolateral prefrontal cortex; laINS: left anterior insula; raINS: right anterior insula. lCAD: left caudate; rCAD: right CAD; lTHA: left thalamus; rTHA: right thalamus. lCEB/FG: left cerebellum/fusiform gyrus; rCEB/ FG: right cerebellum/fusiform gyrus.
    The average quantitative CBF values in the TNN and TPN ROIs (A), in the ROIs which exhibited linearly decreasing CBF (B), in the cortical ROIs which exhibited linearly increasing CBF (C), in the subcortical ROIs which exhibited linearly increasing CBF (D), and in the cerebellar ROIs which exhibited linearly increasing CBF (E) from 0b to 3b. Bars labeled in blue, cyan, pink and red demonstrate the CBF values under 0b, 1b, 2b and 3b, separately. TNN: task negative network; TPN: task positive network. PCC: posterior cingulate cortex; MPFC: medial prefrontal
cortex; laTEMP: left anterior temporal gyrus; raTEMP: right anterior temporal gyrus. lIPL: left inferior parietal lobule. rIPL: right inferior parietal lobule. lMFG: left middle frontal gyrus; rMFG: right middle frontal gyrus; SMA: supplementary motor area; lpreCG: left precentral cingulate gyrus; ldlPFC: left dorsolateral prefrontal cortex; rdlPFC: right dorsolateral prefrontal cortex; laINS: left anterior insula; raINS: right anterior insula. lCAD: left caudate; rCAD: right CAD; lTHA: left thalamus; rTHA: right thalamus. lCEB/FG: left cerebellum/fusiform gyrus; rCEB/ FG: right cerebellum/fusiform gyrus.
  • [Figure 4.] The average quantitative CBF values in the cortical ROIs exhibiting a quadratic trend of CBF (A) and in the cortical ROIs exhibiting a cubic trend of CBF (B) from 0b to 3b. Bars labeled in blue, cyan, pink and red demonstrate the CBF values under 0b, 1b, 2b and 3b, separately. lIPL: left inferior parietal lobule. rIPL: right inferior parietal lobule.
    The average quantitative CBF values in the cortical ROIs exhibiting a quadratic trend of CBF (A) and in the cortical ROIs exhibiting a cubic trend of CBF (B) from 0b to 3b. Bars labeled in blue, cyan, pink and red demonstrate the CBF values under 0b, 1b, 2b and 3b, separately. lIPL: left inferior parietal lobule. rIPL: right inferior parietal lobule.