Caloglossa beccarii (Delesseriaceae, Rhodophyta) from freshwater rivers in Kerala, India, a critical new record

  • cc icon
  • ABSTRACT

    Caloglossa species occurs in freshwater streams around Southest Asia. We report it from 2 different riverine sites in Kerala, India. Tetrasporangiate plants were observed in field collections from the Periyar River and Chalakkudy River. The Chalakkudy isolate did not reproduce in culture but the Periyar isolate developed abundant tetrasporangial sori in culture. Many spores were discharged and most were abortive, but some germinated normally, sporelings forming male gametophytes with numerous spermatangial sori and females with many procarps, viable carposporophytes and some nonfunctional (no carpospores) pseudocystocarps. Some carpospores germinated forming new tetrasporophytes. Molecular evidence (28S rDNA and rbcL) placed the Indian specimens close to C. beccarii and C. fluviatilis. Considering the freshwater habitat and morphology of vegetative thalli (blade shape, rhizoid arrangement, and number of rhizoid filament per cell), the Indian specimens should be assigned to C. beccarii.


  • KEYWORD

    Caloglossa beccarii , Caloglossa fluviatilis , India , Kerala , LSU , rbcL

  • 1. Beccari O. 1904 Wanderings in the Great Forests of Borneo P.424 google
  • 2. Goodman K. M., Hay M. E. 2013 Activated chemical defenses suppress herbivory on freshwater red algae [Oecologia] Vol.171 P.921-933 google doi
  • 3. Guiry M. D., Guiry G. M. 2015 AlgaeBase google
  • 4. Hayakawa Y., Ogawa T., Yoshikawa S., Ohki K., Kamiya M. 2012 Genetic and ecophysiological diversity of Cladophora (Cladophorales, Ulvophyceae) in various salinity regimes [Phycol. Res.] Vol.60 P.86-97 google doi
  • 5. Jao C. C. 1941 Studies on the freshwater algae of China VIII. A preliminary account of the Chinese freshwater Rhodophyceae [Sinensia] Vol.12 P.245-290 google
  • 6. Johnston E. T., Lim P. -E., Buhari N., Keil E. J., Djawad M. I., Vis M. L. 2014 Diversity of freshwater red algae (Rhodophyta) in Malaysia and Indonesia from morphological and molecular data [Phycologia] Vol.53 P.329-341 google doi
  • 7. Jose L., Patel R. J. 1990 Caloglossa ogasawaraensis (Rhodophyta, Delesseriaceae), a freshwater Rhodophyceae new to India [Cryptogam. Algol.] Vol.11 P.225-228 google
  • 8. Kamiya M., West J. A. 2014 Cryptic diversity in the euryhaline red alga Caloglossa ogasawaraensis (Delesseriaceae, Ceramiales) [Phycologia] Vol.53 P.374-382 google doi
  • 9. Kamiya M., Zuccarello G. C., West J. A. 2003 Evolutionary relationships of the genus Caloglossa (Delesseriaceae, Rhodophyta) inferred from large-subunit ribosomal RNA gene sequences, morphological evidence and reproductive compatibility, with description of a new species from Guatemala [Phycologia] Vol.42 P.478-497 google doi
  • 10. King R. J., Puttock C. F. 1994 Morphology and taxonomy of Caloglossa (Delesseriaceae, Rhodophyta) [Aust. Syst. Bot.] Vol.7 P.89-124 google doi
  • 11. Krayesky D. M., Norris J. N., West J. A., Kamiya M., Viguerie M., Wysor B. S., Fredericq S. 2012 Two new species of Caloglossa (Delesseriaceae, Rhodophyta) from the Americas, C. confusa and C. fluviatilis spp. nov [Phycologia] Vol.51 P.513-530 google doi
  • 12. Lin S. -M., Fredericq S., Hommersand M. H. 2001 Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoideae, subfam. nov [J. Phycol.] Vol.37 P.881-899 google doi
  • 13. Okamura K. 1897 On the algae from Ogasawara-jima (Bonin Islands) [Bot. Mag. Tokyo] Vol.11 P.1-17 google doi
  • 14. Pedroche F. F., West J. A., Zuccarello G. C., Senties A. G., Karsten U. 1995 Marine red algae of the mangroves in Southern Pacific Mexico and Pacific Guatemala [Bot. Mar.] Vol.38 P.111-120 google
  • 15. Sato H., Akiyama H. 2001 Caloglossa beccarii (Ceramiales, Rhodophyta) from Thailand on the Malay Peninsula and its distribution in Southeast Asia [Nat. Hum. Act.] Vol.6 P.101-104 google
  • 16. Sheath R. G., Vis M. L., Cole K. M. 1993 Distribution and systematics of freshwater Ceramiales (Rhodophyta) in north America [J. Phycol.] Vol.29 P.108-117 google doi
  • 17. Soto R. 1982 Caloglossa ogassuarensis Skuja (Rhodophyta, Ceramiales, Delesseriaceae) en Costa Rica [Brenesia] Vol.19 P.251-253 google
  • 18. Tanabe A. S. 2011 Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data [Mol. Ecol. Resour.] Vol.11 P.614-921 google
  • 19. West J. A., Andersen R. 2005 Long-term macroalgal culture maintenance P.157-163 google
  • 20. West J. A., Zuccarello G. C. 1995 New records of Bostrychia pinnata and Caloglossa ogasawaraensis (Rhodophyta) from the Atlantic USA [Bot. Mar.] Vol.38 P.303-306 google
  • 21. West J. A., Zuccarello G. C., Kamiya M. 2001 Reproductive patterns of Caloglossa species (Delessericeae, Rhodophyta) from Australia and New Zealand: multiple origins of asexuality in C. leprieurii. Literature review of apomixis, mixed-phase reproduction, bisexuality and self-compatibility [Phycol. Res.] Vol.49 P.183-200 google doi
  • 22. West J., Kraft G. 1996 Ectocarpus siliculosus (Dillwyn) Lyngb. from the Hopkins River Falls, Victoria. The first record of a freshwater brown alga in Australia [Muelleria] Vol.9 P.29-33 google
  • 23. Womersley H. B. S., Bailey A. 1970 Marine algae of the Solomon Islands [Philos. Trans. R. Soc. Lond. B Biol. Sci.] Vol.259 P.257-352 google doi
  • 24. Zanardini G. 1872 Phycearum indicarum pugillus a Cl. Eduardo Beccari ad Borneum, Sincapoore, et Ceylanum annis MDCCCLXV-VI-VIII collectarumqus cognitas determinavit, novasque descripsit iconibusque illustrare curvit Joannes Zanardini [Mem. R. Inst. Veneto Sci. Lett. Art.] Vol.17 P.129-170 google
  • 25. Zuccarello G. C., Kamiya M., Ootsuki R., Loiseaux-de Goer S., Pedroche F. F., West J. A. 2012 New records of red algae from mangroves in El Salvador and Pacific Mexico, combining culture and molecular observations [Bot. Mar.] Vol.55 P.101-111 google
  • [Fig. 1.] (A) Map of Kerala, India showing Periyar and Chalakkudy River collecting sites. (B) Ganesan and Jose collecting at Ezhattumugham, Chalakkudy River in 2013, showing solid rock substrate and topography. (C) Habit of field specimens from Ezhattumugham, Chalakkudy River.
    (A) Map of Kerala, India showing Periyar and Chalakkudy River collecting sites. (B) Ganesan and Jose collecting at Ezhattumugham, Chalakkudy River in 2013, showing solid rock substrate and topography. (C) Habit of field specimens from Ezhattumugham, Chalakkudy River.
  • [Table 1.] Caloglossa beccarii collection locations, substrates, temperatures, salinities, reproduction, collectors, and dates, Kerala, India
    Caloglossa beccarii collection locations, substrates, temperatures, salinities, reproduction, collectors, and dates, Kerala, India
  • [Table 2.] The information of primers for PCR and sequencing
    The information of primers for PCR and sequencing
  • [Fig. 2.] Field specimens collected from Chalakkudy River, Kerala, India on November 24, 2012. (A) Whole thallus. Several rhizoidal filaments are produced from the ventral side of the nodes (arrowheads). (B) Slightly constricted node. (C) Part of thallus at second node from apex. Lateral axis (large arrow) is still diminutive. Nodal cell (diamond) produces one cell row (small arrow) toward main axis side. First axial cell of lateral axis (triangle) forms one cell row on adaxial side. First axial cell of the main axis (star) produces two cell rows (arrowheads) opposite lateral blade. (D) Rhizoidal filaments (arrowheads) produced from pericentral cells at node. (E) Adventitious blade initials (arrows) developed from lateral pericentral cells of first axial cell above node. (F) An adventitious blade initial (arrow) derived from internodal marginal cell. (G) Immature tetrasporangia (arrows). Scale bars represent: A, 500 μm; B, 200 μm; C, E & G, 50 μm; D & F, 100 μm.
    Field specimens collected from Chalakkudy River, Kerala, India on November 24, 2012. (A) Whole thallus. Several rhizoidal filaments are produced from the ventral side of the nodes (arrowheads). (B) Slightly constricted node. (C) Part of thallus at second node from apex. Lateral axis (large arrow) is still diminutive. Nodal cell (diamond) produces one cell row (small arrow) toward main axis side. First axial cell of lateral axis (triangle) forms one cell row on adaxial side. First axial cell of the main axis (star) produces two cell rows (arrowheads) opposite lateral blade. (D) Rhizoidal filaments (arrowheads) produced from pericentral cells at node. (E) Adventitious blade initials (arrows) developed from lateral pericentral cells of first axial cell above node. (F) An adventitious blade initial (arrow) derived from internodal marginal cell. (G) Immature tetrasporangia (arrows). Scale bars represent: A, 500 μm; B, 200 μm; C, E & G, 50 μm; D & F, 100 μm.
  • [Fig. 3.] (A) Habit of culture 4841 showing branching, nodes and tetrasporangial sori. (B) Tetrasporangial sori (single row of sporangia on each side of midrib) showing developing, mature and discharged sporangia. (C) Young tetraspore germling with upper blade and rhizoids at base. (D) Mature male with spermatangial sori on many blades. (E) Blade tip with elongate spermatangial sori. (F) Adventitious blades from intermodal marginal wing cells of vegetative blade like that of field specimen, Fig. 2F. Scale bars represent: A & D, 1 mm; B, C, E & F, 100 μm.
    (A) Habit of culture 4841 showing branching, nodes and tetrasporangial sori. (B) Tetrasporangial sori (single row of sporangia on each side of midrib) showing developing, mature and discharged sporangia. (C) Young tetraspore germling with upper blade and rhizoids at base. (D) Mature male with spermatangial sori on many blades. (E) Blade tip with elongate spermatangial sori. (F) Adventitious blades from intermodal marginal wing cells of vegetative blade like that of field specimen, Fig. 2F. Scale bars represent: A & D, 1 mm; B, C, E & F, 100 μm.
  • [Fig. 4.] (A) Female trichogyne with numerous attached spermatia. (B) Female with numerous developing and mature carposporophytes. (C) Female with supporting cell (sc), carpogonial branch (prc) and trichogyne (arrowhead) on blade midrib. (D) Lateral view of young cystocarp with normal pericarp and gonimoblast with developing carposporangia visible underneath. Lightly stained with anilin blue. (E) Face view of pseudocystocarp with pericarp enclosing ostiole in center. Panels C, D, and E were treated with 10 s. 800 W microwave to shrink cells. Scale bars represent: A & D, 100 μm; B, 500 μm; C, 25 μm; E, 50 μm.
    (A) Female trichogyne with numerous attached spermatia. (B) Female with numerous developing and mature carposporophytes. (C) Female with supporting cell (sc), carpogonial branch (prc) and trichogyne (arrowhead) on blade midrib. (D) Lateral view of young cystocarp with normal pericarp and gonimoblast with developing carposporangia visible underneath. Lightly stained with anilin blue. (E) Face view of pseudocystocarp with pericarp enclosing ostiole in center. Panels C, D, and E were treated with 10 s. 800 W microwave to shrink cells. Scale bars represent: A & D, 100 μm; B, 500 μm; C, 25 μm; E, 50 μm.
  • [Fig. 5.] Maximum-likelihood (ML) phylogeny of Caloglossa species inferred from the partial large subunit of rRNA gene sequences. Taenioma perpusillum (J. Agardh) J. Agardh was used as an outgroup. The bootstrap values for ML (>50%; left) and posterior probabilities for Bayesian inference (≥0.80; right) are presented for each branch. Accession number, strain number or sample name is shown in each parenthesis.
    Maximum-likelihood (ML) phylogeny of Caloglossa species inferred from the partial large subunit of rRNA gene sequences. Taenioma perpusillum (J. Agardh) J. Agardh was used as an outgroup. The bootstrap values for ML (>50%; left) and posterior probabilities for Bayesian inference (≥0.80; right) are presented for each branch. Accession number, strain number or sample name is shown in each parenthesis.
  • [Fig. 6.] Maximum-likelihood phylogeny of Caloglossa species inferred from the partial rbcL gene sequences. Centroceras gasparrinii (Meneghini) Kutzing was used as an outgroup. Other information is in the Fig. 5 legend.
    Maximum-likelihood phylogeny of Caloglossa species inferred from the partial rbcL gene sequences. Centroceras gasparrinii (Meneghini) Kutzing was used as an outgroup. Other information is in the Fig. 5 legend.