Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida

  • cc icon
  • ABSTRACT

    Seagrass epiphyte blooms potentially have important economic and ecological consequences in Tampa Bay, one of the Gulf of Mexico’s largest estuaries. As part of a Tampa Bay pilot study to monitor the impact of environmental stresses,precise characterization of epiphyte diversity is required for efficient management of affected resources. Thus, epiphyte diversity may be used as a rational basis for assessment of ecosystem health. In May 2001, epiphytic species encompassing green, brown and red macroalgae were manually collected from dense and sparse seagrass beds of Thalassia testudinum and Syringodium filiforme. A total of 20 macroalgal epiphytes, 2 Chlorophyta, 2 Phaeophyta, and 16 Rhodophyta,were found on T. testudinum and S. filiforme seagrass at the four sampling sites (Bishop Harbor, Cockroach Bay, Feather Sound, and Mariposa Key). The Rhodophyta, represented by 16 species, dominated the numbers of species. Among them, the thin-crusted Hydrolithon farinosum was the most commonly found epiphyte on seagrass leaves. Species number, as well as species frequency of epiphytes, is higher at dense seagrass sites than sparse seagrass sites. Four attachment patterns of epiphytes can be classified according to cortex and rhizoid development: 1) creeping, 2) erect,3) creeping & erect, and 4) erect & holding. The creeping type is characterized by an encrusting thallus without a rhizoid or holdfast base. Characteristics of the erect type include a filamentous thallus with or without a cortex, and a rhizoid or holdfast base. The creeping and erect type is characterized by a filamentous thallus with a cortex and rhizoid. A filamentous thallus with a cortex, holdfast base, and host holding branch is characteristics of the erect and holdfast attachment type. This study characterized each species found on the seagrass for epiphyte identification.


  • KEYWORD

    epiphytes , Florida , seagrass , Syringodium filiforme , Tampa Bay , taxonomy , Thalassia testudinum

  • 1. Agardh C. A, Kunth C. S 1822 Algae.In Synopsis Plantarum Quas in Itinere ad Plagam Aequinoctialem Orbis Novi Collegerunt Al. de Humboldt et Am. Bonpland P.1-16 google
  • 2. Agardh C. A 1824 Systema algarum P.312 google
  • 3. Agardh C. A 1828 Species algarum cognitae cum synonymis differentiis specificis et descriptionibus succinctis vol. 2 part 1. P.189 google
  • 4. Agardh J. G 1883 Till algernes systematik. Nya bidrag. (Tredje afdelningen.) [Lunds Universitets Ars-Skrift Afdelningen for Mathematik och Naturvetenskap] Vol.19 P.1-177 google
  • 5. Almasi M. N, Hoskin C. M, Reed J. K, Milo J 1987 Effects of natural and artificial Thalassia on rates of sedimentation [J. Sediment. Petrol] Vol.57 P.901-906 google
  • 6. Ambronn H 1880 Ueber einige Falle von Bilateralitat bei den Florideen [Botanische Zeitung] Vol.38 P.161-174 google
  • 7. Ballantine D, Humm H. J 1975 Benthic algae of the Anclote estuary I. Epiphytes of seagrass leaves [Fla. Sci] Vol.38 P.150-162 google
  • 8. Cho T. O, Boo S. M, Hommersand M. H, Maggs C. A, McIvor L, Fredericq S 2008 Gayliella gen. nov. in the tribe Ceramieae (Ceramiaceae Rhodophyta) based on molecular and morphological evidence [J. Phycol] Vol.44 P.721-738 google doi
  • 9. Dawes C. J, Durako M. J, Phillips R. C, Lewis R. R. III Aug 12 1985 The dynamic seagrasses of the Gulf of Mexico and Florida coasts. Fla. Marine Research Publ. No. 42 [Proc. of Symp. on Subtropical Seagrasses of the S.E. U. S] google
  • 10. Dawes C. J, Hall M. O, Riechert R. K 1985 Seasonal biomass and energy content in seagrass communities on the West Coast of Florida. [J. Coast. Res] Vol.1 P.255-262 google
  • 11. Dawes C. J, Hanisak D, Kenworthy W. J 1995 Seagrass biodiversity in the Indian River Lagoon [Mar. Sci] Vol.57 P.59-66 google
  • 12. Drew K. M 1956 Conferva ceramicola Lyngbye [Bot.Tidsskr] Vol.53 P.67-74 google
  • 13. Eiseman N. J 1980 An illustrated guide to the sea grasses of the Indian River region of Florida P.24 google
  • 14. Harvey W. H 1852 Nereis boreali-Americana. Part I. Melanospermeae [Smithsonian Contrib. Knowledge] Vol.3 P.1-150 google
  • 15. Harvey W. H 1853 Nereis boreali-americana; or contributions towards a history of the marine algae of the Atlantic and Pacific coasts of North America. Part II. Rhodospermeae [Smithsonian Contrib. Knowledge] Vol.5 P.1-258 google
  • 16. Heijs F. M. L 1984 Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) [Aschers. Aquat. Bot] Vol.20 P.195-218 google doi
  • 17. Hemminga M. A, Duarte C. M 2000 Seagrass ecology P.310 google
  • 18. Hollenberg G. J 1942 An account of the species of Polysiphonia on the Pacific coast of North America. I. Oligosiphonia. [Am. J. Bot] Vol.29 P.772-785 google doi
  • 19. Hooker W. J, Hooker W. J 1833 Div. I. Inarticulatae. In The English Flora of Sir James Edward Smith. Class XXIV. Cryptogamia. Vol. V. (or Vol. II of Dr. Hooker’s British flora). Part I. Comprising the Mosses Hepaticae Lichens Characeae and Algae. P.250-259 google
  • 20. Howe M. A, Britton N. L, Millspaugh C. F 1920 Algae. In The Bahama Flora. P.553-618 google
  • 21. Humm H. J 1964 Epiphytes of the seagrass Thalassia testudinum in Florida [Bull. Mar. Sci. Gulf Caribb.] Vol.14 P.306-341 google
  • 22. Jacquin N. J 1791 Collectanea ad botanicam chemiam et historiam naturalem spectantia cum figuris vol. 3. P.306 google
  • 23. Koch E. W 1999 Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed [Aquat. Bot] Vol.65 P.269-280 google doi
  • 24. Kutzing F. T 1843 Phycologia generalis oder Anatomie Physiologie und Systemkunde der Tange: Bearb. von Friedrich Traugott Kutzing. Mit 80 farbig gedruckten Tafeln gezeichnet und gravirt vom Verfasser P.458 google
  • 25. Kutzing F. T 1847 Diagnosen und Bemerkungen zu neuen oder kritischen Algen [Bot. Zeit] Vol.5 P.1-5 google
  • 26. Kutzing F. T 1849 Species algarum P.922 google
  • 27. Lamouroux J. V. F 1813 Essai sur les genres de la famille des thalassiophytes non articulees [Ann. Mus. Hist. Natl. Paris] Vol.20 P.21-47 google
  • 28. J. V. F. Lamouroux 1816 Histoire des polypiers coralligenes flexibles vulgairement nommes zoophytes P.560 google
  • 29. Land L. S 1970 Carbonate mud: production by epibiont growth on Thalassia testudinum [J. Sediment. Petrol] Vol.40 P.1361-1363 google
  • 30. Leliaert F, Vanreusel W, De Clerck O, Coppejans E 2001 Epiphytes on the seagrasses of Zanzibar Island (Tanzania) floristic and ecological aspects [Belg. J. Bot] Vol.134 P.3-20 google
  • 31. Littler D. S, Littler M. M 2000 Caribbean reef plants. An identification guide to the reef plants of the Caribbean Bahamas Florida and Gulf of Mexico P.542 google
  • 32. Montagne J. F. C, Barker-Webb P, Berthelot S 1841 Plantae cellulares. In Histoire Naturelle des Iles Canaries vol. 3 P.161-208 google
  • 33. Penrose D, Chamberlain Y. M 1993 Hydrolithon farinosum (Lamouroux) comb. nov.: implications for generic concepts in the Mastophoroideae (Corallinaceae Rhodophyta) [Phycologia] Vol.32 P.295-303 google
  • 34. Roth A. W 1797 Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illustrantur. Fasc. 1 P.244 google
  • 35. Silva P. C, Menez E. G, Moe R. L 1987 Catalog of the benthic marine algae of the Philippines [Smithsonian Contrib. Mar. Sci] Vol.27 P.1-179 google
  • 36. Turner D 1808-1809 Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci or coloured figures and descriptions of the plants referrred by botanists to the genus Fucus vol. 2. P.164 google
  • 37. Virnstein R. W, Cairns K. D 1986 Seagrass maps of the Indian River Lagoon: final report to DER September 1986 P.27 google
  • 38. Won B. Y, Cho T. O, Fredericq S 2009 Morphological and molecular characterization of species of the genus Centroceras (Ceramiaceae Ceramiales) including two new species [J. Phycol] Vol.45 P.227-250 google doi
  • 39. Wulfen F. X 1803 Cryptogama aquatica [Arch. Bot] Vol.3 P.1-64 google
  • 40. Wynne M. J 1985 Concerning the names Scagelia corallina and Heterosiphonia wurdmannii (Ceramiales Rhodophyta) [Cryptogam. Algol] Vol.6 P.81-90 google
  • 41. Zanardini G 1839 Sulle alghe. Lettera alla Direzione della Biblioteca Italiana [Bibl. Ital] Vol.96 P.195-229 google
  • [Table1.] Comparison of epiphyte attachment patterns on Syringodium filiforme and Thalassia testudinum
    Comparison of epiphyte attachment patterns on Syringodium filiforme and Thalassia testudinum
  • [Fig.1.] Abundance of epiphytic macroalgae expressed as the total number of individuals found on 25 Thalassia testudinum from each dense and sparse site.
    Abundance of epiphytic macroalgae expressed as the total number of individuals found on 25 Thalassia testudinum from each dense and sparse site.
  • [Fig. 2.] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 3] Cross section view. Scale bars represent: Fig. 2 1 mm; Fig. 3 100 ㎛
    Cross section view. Scale bars represent: Fig. 2 1 mm; Fig. 3 100 ㎛
  • [Fig. 4.] Vegetative thallus
    Vegetative thallus
  • [Fig. 5.] Upper part of thallus
    Upper part of thallus
  • [Fig. 6.] Dichotomous branching
    Dichotomous branching
  • [Fig. 7.] Trichotomous branching. Scale bars represent: Fig. 4 l mm; Fig. 5 100 μm; Fig. 6 40 μm; Fig. 7 40 μm
    Trichotomous branching. Scale bars represent: Fig. 4 l mm; Fig. 5 100 μm; Fig. 6 40 μm; Fig. 7 40 μm
  • [Fig. 8.] Vegetative thallus with tapering apices (arrows).
    Vegetative thallus with tapering apices (arrows).
  • [Fig. 9] Reproductive thallus
    Reproductive thallus
  • [Fig. 10] Branch with plurilocular sporangia (S). Scale bars represent: Fig. 8 0.5 mm; Fig. 9 100 μm; Fig. 10 40 μm.
    Branch with plurilocular sporangia (S). Scale bars represent: Fig. 8 0.5 mm; Fig. 9 100 μm; Fig. 10 40 μm.
  • [Fig. 11] Vegetative thallus
    Vegetative thallus
  • [Fig. 12.] Slender biradiate propagula (P). Scale bars represent: Fig. 11 0.5 mm; Fig. 12 100 μm.
    Slender biradiate propagula (P). Scale bars represent: Fig. 11 0.5 mm; Fig. 12 100 μm.
  • [Fig. 13] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 14] Upper part of thallus with branch initials (arrow). Scale bars represent: Fig.13 40 μm; Fig. 14 40 μm.
    Upper part of thallus with branch initials (arrow). Scale bars represent: Fig.13 40 μm; Fig. 14 40 μm.
  • [Fig. 15] Vegetative thallus
    Vegetative thallus
  • [Fig. 16] Upper part of thallus with monosporangia (arrows).
    Upper part of thallus with monosporangia (arrows).
  • [Fig. 17.] Lower part of thallus with holdfast. Scale bars represent: Fig. 15 100 μm; Fig. 16 40 μm; Fig. 17 40 μm
    Lower part of thallus with holdfast. Scale bars represent: Fig. 15 100 μm; Fig. 16 40 μm; Fig. 17 40 μm
  • [Fig.18] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 19] Four celled initials
    Four celled initials
  • [Fig. 20] Cross section view of thallus on seagrass
    Cross section view of thallus on seagrass
  • [Fig. 21] Female conceptacle
    Female conceptacle
  • [Fig. 22] Cross section view of female conceptacle
    Cross section view of female conceptacle
  • [Fig. 23.] Tetrasporangial conceptacle
    Tetrasporangial conceptacle
  • [Fig. 24] Cross section view of tetrasporangial conceptacle having tetrasporangia (T). Scale bars represent: Fig. 18 100 μm; Fig. 19 10 μm; Fig. 20 40 μm; Fig. 21 20 μm; Fig. 22 40 μm; Fig. 23 20 μm; Fig. 24 40 μm.
    Cross section view of tetrasporangial conceptacle having tetrasporangia (T). Scale bars represent: Fig. 18 100 μm; Fig. 19 10 μm; Fig. 20 40 μm; Fig. 21 20 μm; Fig. 22 40 μm; Fig. 23 20 μm; Fig. 24 40 μm.
  • [Fig. 25] Vegetative thallus
    Vegetative thallus
  • [Fig. 26] Curved apex
    Curved apex
  • [Fig. 27] Coiled apex.
    Coiled apex.
  • [Fig. 28] Tangled branches (arrow).
    Tangled branches (arrow).
  • [Fig. 29.] Cross section view of thallus. Scale bars represent: Fig. 25 1 mm; Fig. 26 0.5 mm; Fig. 27 0.5 mm; Fig. 28 1 mm; Fig. 29 50 μm.
    Cross section view of thallus. Scale bars represent: Fig. 25 1 mm; Fig. 26 0.5 mm; Fig. 27 0.5 mm; Fig. 28 1 mm; Fig. 29 50 μm.
  • [Figs 30] Vegetative thallus
    Vegetative thallus
  • [Fig. 31.] Upper part of thallus
    Upper part of thallus
  • [Fig. 32] Spine-like branchlets (arrows) on middle part of thallus
    Spine-like branchlets (arrows) on middle part of thallus
  • [Fig. 33] Cross section view of thallus. Scale bars represent: Fig. 30 1 mm; Fig. 31 1 mm; Fig. 32 0.5 mm; Fig. 33 50 μm.
    Cross section view of thallus. Scale bars represent: Fig. 30 1 mm; Fig. 31 1 mm; Fig. 32 0.5 mm; Fig. 33 50 μm.
  • [Fig. 34] Vegetative thallus
    Vegetative thallus
  • [Fig. 35.] Stellate branchlets (arrows) on middle part of thallus
    Stellate branchlets (arrows) on middle part of thallus
  • [Fig. 36] Cross section view of thallus. Scale bars represent: Fig. 34 1 mm; Fig. 35 0.5 mm; Fig. 36 50 μm.
    Cross section view of thallus. Scale bars represent: Fig. 34 1 mm; Fig. 35 0.5 mm; Fig. 36 50 μm.
  • [Fig. 37.] Vegetative thallus
    Vegetative thallus
  • [Fig. 38.] Surface showing the scattered small cells
    Surface showing the scattered small cells
  • [Fig. 39.] Cross section view through node.
    Cross section view through node.
  • [Fig. 40] Cross section view through internode
    Cross section view through internode
  • [Fig. 41] Longitudinal section view of upper thallus
    Longitudinal section view of upper thallus
  • [Fig. 42.] Longitudinal section view of nodal part.
    Longitudinal section view of nodal part.
  • [Fig. 43] Longitudinal section view showing gland cell (arrow head) and longitudinal filaments (arrow).
    Longitudinal section view showing gland cell (arrow head) and longitudinal filaments (arrow).
  • [Fig. 44.] Male branch with spermatangial sori.
    Male branch with spermatangial sori.
  • [Fig. 45] Surface of spermatangial sori
    Surface of spermatangial sori
  • [Fig. 46.] Cross section of male branch with spermatangia (S).
    Cross section of male branch with spermatangia (S).
  • [Fig. 47.] Female thallus with cystocarp (C).
    Female thallus with cystocarp (C).
  • [Fig. 48.] Longitudinal section of cystocarp with carpospores
    Longitudinal section of cystocarp with carpospores
  • [Fig. 49.] Surface of tetrasporic thallus with tetrasporangia (T).
    Surface of tetrasporic thallus with tetrasporangia (T).
  • [Fig. 50.] Cross section of tetrasporic thallus showing tetrasporangium developed from cortical cell. Scale bars represent: Fig. 37 1 mm; Fig. 38 40 μm; Fig. 39 50 μm; Fig. 40 50 μm; Fig. 41 100 μm; Fig. 42 50 μm; Fig. 43 20 μm; Fig. 44 0.5 mm; Fig. 45 40 μm; Fig. 46 40 μm; Fig. 47 100 μm; Fig. 48 100 μm; Fig. 49 100 μm; Fig. 50 20 μm.
    Cross section of tetrasporic thallus showing tetrasporangium developed from cortical cell. Scale bars represent: Fig. 37 1 mm; Fig. 38 40 μm; Fig. 39 50 μm; Fig. 40 50 μm; Fig. 41 100 μm; Fig. 42 50 μm; Fig. 43 20 μm; Fig. 44 0.5 mm; Fig. 45 40 μm; Fig. 46 40 μm; Fig. 47 100 μm; Fig. 48 100 μm; Fig. 49 100 μm; Fig. 50 20 μm.
  • [Fig. 51.] Griffithsia sp.
    Griffithsia sp.
  • [Fig. 52.] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 53] Cross section view through cortical node
    Cross section view through cortical node
  • [Fig. 54.] Cross section view through internode
    Cross section view through internode
  • [Fig. 55.] Creeping part of lower thallus having rhizoids (R).
    Creeping part of lower thallus having rhizoids (R).
  • [Fig. 56.] Cortical node with spermatangia (S) of male thallus
    Cortical node with spermatangia (S) of male thallus
  • [Fig. 57.] Tetrasporangial thallus
    Tetrasporangial thallus
  • [Fig. 58.] Tetrasporangia (T) with involucral branches (arrows) in abaxial side. Scale bars represent: Fig. 52 0.5 mm; Fig. 53 20 μm; Fig. 54 20 μm; Fig. 55 100 μm; Fig. 56 40 μm; Fig. 57 0.5 mm; Fig. 58 50 μm.
    Tetrasporangia (T) with involucral branches (arrows) in abaxial side. Scale bars represent: Fig. 52 0.5 mm; Fig. 53 20 μm; Fig. 54 20 μm; Fig. 55 100 μm; Fig. 56 40 μm; Fig. 57 0.5 mm; Fig. 58 50 μm.
  • [Fig. 59] Vegetative thallus
    Vegetative thallus
  • [Fig. 60] Creeping and erect parts of thallus. Scale bars represent: Fig. 59 50 μm; Fig. 60 100 μm.
    Creeping and erect parts of thallus. Scale bars represent: Fig. 59 50 μm; Fig. 60 100 μm.
  • [Fig. 61.] Vegetative thallus
    Vegetative thallus
  • [Fig. 62.] Cortical nodes. Scale bars represent: Fig. 61 100 μm; Fig. 62 20 μm.
    Cortical nodes. Scale bars represent: Fig. 61 100 μm; Fig. 62 20 μm.
  • [Fig. 63.] Herposiphonia tenella
    Herposiphonia tenella
  • [Fig. 64.] Thallus.
    Thallus.
  • [Fig. 65.] Apex with prominent scar cells (arrow).
    Apex with prominent scar cells (arrow).
  • [Fig. 66] Cross section of thallus
    Cross section of thallus
  • [Fig. 67.] Cystocarp. Scale bars represent: Fig. 64 0.5 mm; Fig. 65 40 μm; Fig. 66 20 μm; Fig. 67 100 μm.
    Cystocarp. Scale bars represent: Fig. 64 0.5 mm; Fig. 65 40 μm; Fig. 66 20 μm; Fig. 67 100 μm.
  • [Fig. 68.] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 69.] Surface of axis
    Surface of axis
  • [Fig. 70.] Tangled branches (arrow). Scale bars represent: Fig. 68 0.5 mm; Fig. 69 40 μm; Fig. 70 1 mm.
    Tangled branches (arrow). Scale bars represent: Fig. 68 0.5 mm; Fig. 69 40 μm; Fig. 70 1 mm.
  • [Fig. 71.] Vegetative thallus
    Vegetative thallus
  • [Fig. 72.] Branchlet. Scale bars represent: Fig. 71 0.5 mm; Fig. 72 100 μm.
    Branchlet. Scale bars represent: Fig. 71 0.5 mm; Fig. 72 100 μm.
  • [Fig. 73] Vegetative thallus.
    Vegetative thallus.
  • [Fig. 74.] Surface view of thallus
    Surface view of thallus
  • [Fig. 75] Apex.
    Apex.
  • [Fig. 76] Cross section of thallus.
    Cross section of thallus.
  • [Fig. 77.] Apical cell (arrow) of branch
    Apical cell (arrow) of branch
  • [Fig. 78.] Male thallus
    Male thallus
  • [Fig. 79] Male apex with flat disc like spermatangial sorus (arrows).
    Male apex with flat disc like spermatangial sorus (arrows).
  • [Fig. 80.] Spermatangial sorus with spermatangia (S).
    Spermatangial sorus with spermatangia (S).
  • [Fig. 81] Female thallus
    Female thallus
  • [Fig. 82.] Young cystocarp (C).
    Young cystocarp (C).
  • [Fig. 83.] Tetrasporic thallus
    Tetrasporic thallus
  • [Fig. 84.] Cross section of tetrasporic thallus with tetrasporangia (T).
    Cross section of tetrasporic thallus with tetrasporangia (T).
  • [Fig. 85.] Tetrasporangium developed from a pericentral cell (P). Scale bars represent: Fig. 73 0.25 mm; Fig. 74 40 μm; Fig. 75 100 μm; Fig. 76 50 μm; Fig. 77 20 μm; Fig. 78 0.5 mm; Fig. 79 100 μm; Fig. 80 100 μm; Fig. 81 40 μm; Fig. 82 100 μm; Fig. 83 0.5 mm; Fig. 84 100 μm; Fig. 85 50 μm.
    Tetrasporangium developed from a pericentral cell (P). Scale bars represent: Fig. 73 0.25 mm; Fig. 74 40 μm; Fig. 75 100 μm; Fig. 76 50 μm; Fig. 77 20 μm; Fig. 78 0.5 mm; Fig. 79 100 μm; Fig. 80 100 μm; Fig. 81 40 μm; Fig. 82 100 μm; Fig. 83 0.5 mm; Fig. 84 100 μm; Fig. 85 50 μm.