검색 전체 메뉴
PDF
맨 위로
OA 학술지
The Spectral Sharpness Angle of Gamma-ray Bursts
  • 비영리 CC BY-NC
  • 비영리 CC BY-NC
ABSTRACT
The Spectral Sharpness Angle of Gamma-ray Bursts
KEYWORD
gamma-rays: stars , gamma-ray burst: general , radiation mechanisms: non-thermal , radiation mechanisms: thermal , methods: data analysis
참고문헌
  • 1. Ackermann M, Ajello M, Baldini L, Barbiellini G, Baring MG (2012) Constraining the high-energy emission from gamma-ray bursts with Fermi [Astrophys. J.] Vol.754 P.121-140 google cross ref
  • 2. Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B (2009) The large area telescope on the Fermi GammaRay Space Telescope Mission [Astrophys. J.] Vol.697 P.1071-1102 google cross ref
  • 3. Axelsson M, Borgonovo L (2015) The width of gamma-ray burst spectra [Mon. Not. Roy. Astron. Soc.] Vol.447 P.3105-3154 google cross ref
  • 4. Band D, Matteson J, Ford L, Schaefer B, Palmer D (1993) BATSE observations of gamma-ray burst spectra. I. Spectral diversity [Astrophys. J.] Vol.413 P.281-292 google cross ref
  • 5. Beloborodov AM (2010) Collisional mechanism for gamma-ray burst emission [Mon. Not. Roy. Astron. Soc.] Vol.407 P.1033-1047 google cross ref
  • 6. Beloborodov AM (2013) Regulation of the spectral peak in gammaray bursts [Astrophys. J.] Vol.764 P.157-168 google cross ref
  • 7. Beniamini P, Piran T (2014) The emission mechanism in magnetically dominated gamma-ray burst outflows [Mon. Not. Roy. Astron. Soc.] Vol.445 P.3892-3907 google cross ref
  • 8. Bhat PN (2013) Variability time scales of long, short GRBs google
  • 9. Burgess JM, Preece RD, Baring MG, Briggs MS, Connaughton V (2011) Constraints on the synchrotron shock model for the Fermi GRB 090820A observed by Gamma-ray Burst Monitor [Astrophys. J.] Vol.741 P.24-29 google cross ref
  • 10. Burgess JM, Preece RD, Connaughton V, Briggs MS, Goldstein A (2014) Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models [Astrophys. J.] Vol.784 P.17-34 google cross ref
  • 11. Crider A, Liang EP, Preece RD, Briggs MS, Pendleton GN 6-9 Jan 1999 The spectral evolution of amma-ray bursts [193rd AAS Meeting] google
  • 12. Deng W, Zhang B (2014) Low energy spectral index, Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts [Astrophys. J.] Vol.785 P.112-126 google cross ref
  • 13. Drenkhahn G, Spruit HC (2002) Efficient acceleration and radiation in Poynting flux powered GRB outflows [Astron. Astrophys.] Vol.391 P.1141-1153 google cross ref
  • 14. Elliott J, Yu HF, Schmidl S, Greiner J, Gruber D (2014) Prompt emission of GRB 121217A from gamma-rays to the nearinfrared [Astron. Astrophys.] Vol.562 P.A100 google cross ref
  • 15. Ford LA, Band DL, Matteson JL, Briggs MS, Pendleton GN (1995) BATSE observations of gamma-ray burst spectra. II. Peak energy evolution in bright, long bursts [Astrophys. J.] Vol.439 P.307-321 google cross ref
  • 16. Giannios D (2008) Prompt GRB emission from gradual energy dissipation [Astron. Astrophys.] Vol.480 P.305-312 google cross ref
  • 17. Gill R, Thompson C (2014) Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow [Astrophys. J.] Vol.796 P.81-105 google cross ref
  • 18. Goldstein A, Preece RD, Mallozzi RS, Briggs MS, Fishman GJ (2013) The BATSE 5B gamma-ray burst spectral catalog [Astrophys. J. Suppl. Ser.] Vol.208 P.21-50 google cross ref
  • 19. Golkhou VZ, Butler NR (2014) Uncovering the intrinsic variability of gamma-ray bursts [Astrophys. J.] Vol.787 P.90-98 google cross ref
  • 20. Goodman J (1986) Are gamma-ray bursts optically thick? [Astrophys. J. Lett.] Vol.308 P.L47 google cross ref
  • 21. Greiner J, Yu HF, Kruhler T, Frederiks DD, Beloborodov A (2014) GROND coverage of the main peak of gamma-ray burst 130925A [Astron. Astrophys.] Vol.568 P.A75 google cross ref
  • 22. Gruber D, Goldstein A, von Ahlefeld VW, Bhat PN, Bissaldi E (2014) The Fermi GBM gamma-ray burst spectral catalog: four years of data [Astrophys. J. Suppl. Ser.] Vol.211 P.12-38 google cross ref
  • 23. Hu YD, Liang EW, Xi SQ, Peng FK, Lu RJ (2014) Internal energy dissipation of gamma-ray bursts observed with Swift: precursors, prompt gamma-rays, extended emission, and late X-ray flares [Astrophys. J.] Vol.789 P.145-157 google cross ref
  • 24. Katz JI (1994) Low-frequency spectra of gamma-ray bursts [Astrophys. J. Lett.] Vol.432 P.L107-L109 google cross ref
  • 25. Lazzati D, Morsony BJ, Margutti R, Begelman MC (2013) Photospheric emission as the dominant radiation mechanism in long-duration gamma-ray bursts [Astrophys. J.] Vol.765 P.103-109 google cross ref
  • 26. Lloyd NM, Petrosian V (2000) Synchrotron radiation as the source of gamma-ray burst spectra [Astrophys. J.] Vol.543 P.722-732 google cross ref
  • 27. Lyutikov M, Blandford R (2003) Gamma Ray Bursts as Electromagnetic Outflows google
  • 28. Medvedev MV (2000) Theory of “Jitter” radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks [Astrophys. J.] Vol.540 P.704-714 google cross ref
  • 29. Meegan C, Lichti G, Bhat PN, Bissaldi E, Briggs MS (2009) The Fermi Gamma-Ray Burst Monitor [Astrophys. J.] Vol.702 P.971-804 google cross ref
  • 30. Meszaros P, Rees MJ (1993) Gamma-ray bursts: multiwaveband spectral predictions for blast wave models [Astrophys. J. Lett.] Vol.418 P.L59-L62 google cross ref
  • 31. Meszaros P, Laguna P, Rees MJ (1993) Gasdynamics of relativistically expanding gamma-ray burst sources - Kinematics, energetics, magnetic fields, and efficiency [Astrophys. J.] Vol.415 P.181-190 google cross ref
  • 32. Paczynski B (1986) Gamma-ray bursters at cosmological distances [Astrophys. J. Lett.] Vol.308 P.L43-L46 google cross ref
  • 33. Pe’er A (2015) Physics of gamma-ray bursts prompt emission [Adv. Astron.] Vol.2015 P.907321 google cross ref
  • 34. Pe’er A, Ryde F (2011) A theory of multicolor blackbody emission from relativistically expanding plasmas [Astrophys. J.] Vol.732 P.49-56 google cross ref
  • 35. Pe’er A, Meszaros P, Rees MJ (2006) The observable effects of a photospheric component on GRB and XRF prompt emission spectrum [Astrophys. J.] Vol.642 P.995-1003 google cross ref
  • 36. Peng FK, Liang EW, Wang XY, Hou SJ, Xi SQ (2014) Photosphere emission in the X-ray flares of Swift gamma-ray bursts, implications for the fireball properties [Astrophys. J.] Vol.795 P.155-169 google cross ref
  • 37. Piran T (1999) Gamma-ray bursts and the fireball model [Phys. Rep.] Vol.314 P.575-667 google cross ref
  • 38. Preece RD, Briggs MS, Mallozzi RS, Pendleton GN, Paciesas WS (1998) The synchrotron shock model confronts a “Line of Death” in the BATSE Gamma-Ray Burst Data [Astrophys. J. Lett.] Vol.506 P.L23-L26 google cross ref
  • 39. Preece RD, Briggs MS, Giblin TW, Mallozzi RS, Pendleton GN (2002) On the consistency of gamma-ray burst spectral indices with the synchrotron shock model [Astrophys. J.] Vol.581 P.1248-1255 google cross ref
  • 40. Rees MJ, Meszaros P (1992) Relativistic fireballs: energy conversion and time-scales [Mon. Not. Roy. Astron. Soc.] Vol.258 P.41P-43P google cross ref
  • 41. Rees MJ, Meszaros P (1994) Unsteady outflow models for cosmological gamma-ray bursts [Astrophys. J.] Vol.430 P.L93-L96 google cross ref
  • 42. Ryde F, Pe’er A, Nymark T, Axelsson M, Moretti E (2011) Observational evidence of dissipative photospheres in gamma-ray bursts [Mon. Not. Roy. Astron. Soc.] Vol.415 P.3693-3705 google cross ref
  • 43. Starling RLC, Page KL, Pe’er A, Beardmore AP, Osborne JP (2012) A search for thermal X-ray signatures in gamma-ray bursts ? I. Swift bursts with optical supernovae [Mon. Not. Roy. Astron. Soc.] Vol.427 P.2950-2964 google cross ref
  • 44. Tavani M (1995) Shock high-energy emission mechanisms applied to SGRs and GRBs [Astrophys. Space Sci.] Vol.231 P.181-186 google cross ref
  • 45. Tavani M (1996) A shock emission model for gamma-ray bursts. II. Spectral properties [Astrophys. J.] Vol.466 P.768-778 google cross ref
  • 46. Thompson C (1994) A model of gamma-ray bursts [Mon. Not. Roy. Astron. Soc.] Vol.270 P.480-498 google cross ref
  • 47. Uhm ZL, Zhang B (2014) Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism [Nature Phys.] Vol.10 P.351-356 google cross ref
  • 48. van Eerten HJ (2015) Simulation and physical model based gamma-ray burst afterglow analysis [J. High Energy Astrophys.] Vol.7 P.23-24 google cross ref
  • 49. Vurm I, Beloborodov AM (2015) Radiative transfer models for gamma-ray bursts google
  • 50. Vurm I, Beloborodov AM, Poutanen J (2011) Gamma-ray bursts from magnetized collisionally heated jets [Astrophys. J.] Vol.738 P.77-89 google cross ref
  • 51. Yu HF, Greiner J, van Eerten H, Burgess JM, Bhat PN (2015a) Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor [Astron. Astrophys.] Vol.573 P.A81 google cross ref
  • 52. Yu HF, van Eerten HJ, Greiner J, Sari R, Bhat PN (2015b) The sharpness of gamma-ray burst prompt emission spectra [Astron. Astrophys.] Vol.583 P.A129 google cross ref
  • 53. Yu HF, Preece RD, Greiner J, Bhat PN, Bissaldi E (2016) The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years [Astron. Astrophys.] Vol.588 P.A135 google cross ref
  • 54. Zhang B (2014) Gamma-ray burst prompt emission [Int. J. Mod. Phys. D] Vol.23 P.1430002 google cross ref
OAK XML 통계
이미지 / 테이블
  • [ Fig. 1. ]  Illustration of how the triangle is constructed and the sharpness angle θ is defined. The vertical and horizontal axis are plotted in logarithmic scale in units of normalized νFν flux and photon energy, respectively.
    Illustration of how the triangle is constructed and the sharpness angle θ is defined. The vertical and horizontal axis are plotted in logarithmic scale in units of normalized νFν flux and photon energy, respectively.
  • [ Fig. 2. ]  Cumulative distribution functions of θ and distributions of σθ. The limits of the normalized blackbody (dotted line), single-electron synchrotron (solid line), and synchrotron with a Maxwellian distribution function (dashed line) are overlaid.
    Cumulative distribution functions of θ and distributions of σθ. The limits of the normalized blackbody (dotted line), single-electron synchrotron (solid line), and synchrotron with a Maxwellian distribution function (dashed line) are overlaid.
  • [ Fig. 3. ]  Distribution of the maximum fraction contributed from the Maxwellian synchrotron function at x = 1. The solid histograms represent the distributions using the best-fit model parameters, while the dashed histogram shows the minimum allowed sharpness by the uncertainties from the best-fit parameters. Spectra with 100% at x = 1 are accumulated in the last bin.
    Distribution of the maximum fraction contributed from the Maxwellian synchrotron function at x = 1. The solid histograms represent the distributions using the best-fit model parameters, while the dashed histogram shows the minimum allowed sharpness by the uncertainties from the best-fit parameters. Spectra with 100% at x = 1 are accumulated in the last bin.
  • [ Fig. 4. ]  Example spectrum taken from GRB 101014.175 (2.560 ? 3.584 sec), showing the maximum contribution to the best-fit model by the Maxwellian synchrotron function, at x = 1. The normalized Maxwellian synchrotron (green curve) and the best-fit model (black curve) overlaid. The black dashed lines show the peak position of the best fit model and the relative normalized flux levels. In this particular spectrum, the Maxwellian fraction is about 65% at x = 1. Deep green data points are from the BGO detector and the others are from the NaI detectors. Triangles represent upper limits. For display purpose, the bin size has been increased by a factor of 5 ? 10 relative to the standard bin size.
    Example spectrum taken from GRB 101014.175 (2.560 ? 3.584 sec), showing the maximum contribution to the best-fit model by the Maxwellian synchrotron function, at x = 1. The normalized Maxwellian synchrotron (green curve) and the best-fit model (black curve) overlaid. The black dashed lines show the peak position of the best fit model and the relative normalized flux levels. In this particular spectrum, the Maxwellian fraction is about 65% at x = 1. Deep green data points are from the BGO detector and the others are from the NaI detectors. Triangles represent upper limits. For display purpose, the bin size has been increased by a factor of 5 ? 10 relative to the standard bin size.
  • [ Fig. 5. ]  Six examples of evolutionary trends of θ. Red, blue, or green color indicates that the best-fit model is exponential cutoff power law (COMP), Band function (BAND), or smoothly broken power law (SBPL), respectively. The light curves are overlaid in arbitrary units. The limits of the normalized blackbody (dotted line), single-electron synchrotron (solid line), and synchrotron emission from a Maxwellian electron distribution (dashed line) are overlaid.
    Six examples of evolutionary trends of θ. Red, blue, or green color indicates that the best-fit model is exponential cutoff power law (COMP), Band function (BAND), or smoothly broken power law (SBPL), respectively. The light curves are overlaid in arbitrary units. The limits of the normalized blackbody (dotted line), single-electron synchrotron (solid line), and synchrotron emission from a Maxwellian electron distribution (dashed line) are overlaid.
  • [ Fig. 6. ]  Sharpness angles plotted against the temporal bin widths per MVT. Red data points show spectra best fit by the exponential cutoff power law (COMP), blue by the Band function (BAND), and green by the smoothly broken power law (SBPL). The vertical dash-dotted line shows where the bin width equals the MVT, only 4.4% of data points are located to the left of the line. The horizontal lines show the limits of the normalized blackbody (dotted), single-electron synchrotron (solid), and synchrotron emission from a Maxwellian electron distribution (dashed).
    Sharpness angles plotted against the temporal bin widths per MVT. Red data points show spectra best fit by the exponential cutoff power law (COMP), blue by the Band function (BAND), and green by the smoothly broken power law (SBPL). The vertical dash-dotted line shows where the bin width equals the MVT, only 4.4% of data points are located to the left of the line. The horizontal lines show the limits of the normalized blackbody (dotted), single-electron synchrotron (solid), and synchrotron emission from a Maxwellian electron distribution (dashed).
  • [ Fig. 7. ]  Comparison between the average sharpness angles, <θ>, to the sharpness angles computed using the time-integrated catalog, θint. The dash-dotted line shows x = y. The solid and dashed lines show the single-electron synchrotron and Maxwellian synchrotron limit, respectively. We note that the error bars of <θ> represent the spread in θ. See main text for the color-coding and details about the plots.
    Comparison between the average sharpness angles, <θ>, to the sharpness angles computed using the time-integrated catalog, θint. The dash-dotted line shows x = y. The solid and dashed lines show the single-electron synchrotron and Maxwellian synchrotron limit, respectively. We note that the error bars of <θ> represent the spread in θ. See main text for the color-coding and details about the plots.
(우)06579 서울시 서초구 반포대로 201(반포동)
Tel. 02-537-6389 | Fax. 02-590-0571 | 문의 : oak2014@korea.kr
Copyright(c) National Library of Korea. All rights reserved.